3,323 research outputs found
Yersinia enterocolitica in Italy. A case of septicemia and abdominal aortic aneurysm infection
We report a case of Yersinia enterocolitica septicemia in a 63-year-old patient admitted to the Vascular Surgery Department of Umberto I Hospital (Rome, Italy) for an abdominal aortic aneurysm. The microorganism, recovered from both peripheral blood cultures and aneurysmatic aortic wall specimens, was identified as Y. enterocolitica using matrix-assisted laser desorption ionization-time of flight analysis (MALDI-TOF MS) and 16S rDNA gene sequencing. The isolate responsible for septicemia belonged to the O:9 serotype (biogroup 2). A genetic screening of the isolate made it possible to detect the presence of both the yst and ail genes, encoding a heat-stable enterotoxin and a protein involved in invasion/adherence and serum resistance, respectively. Our case contributes in enriching epidemiological data concerning Y. enterocolitica infections, which might represent severe complications in patients suffering from cardiovascular diseases. Moreover, this study, together with the others, should be regarded as valuable and useful tools for monitoring the rate of infections worldwide
MOS CCDs for the wide field imager on the XEUS spacecraft
In recent years the XEUS mission concept has evolved and has been the subject of several industrial studies. The mission concept has now matured to the point that it could be proposed for a Phase A study and subsequent flight programme. The key feature of XEUS will be its X-ray optic with collecting area ~30-100x that of XMM. The mission is envisaged at an orbit around the L2 point in space, and is formed from two spacecraft; one for the mirrors, and the other for the focal plane detectors. With a focal length of 50m, the plate scale of the optic is 6.5x that of XMM, which using existing focal plane technology will reduce the effective field of view to a few arc minutes. Cryogenic instrumentation, with detector sizes of a few mm can only be used for narrow field studies of target objects, and a wide field instrument is under consideration using a DEPFET pixel array to image out to a diameter of 5 arcminutes, requiring an array of dimension 70mm. It is envisaged to extend this field of view possibly out to 15 arcminutes through the use of an outer detection ring comprised of MOS CCD
Ideal observer analysis for continuous tracking experiments
Continuous tracking is a newly developed technique that allows fast and efficient data acquisition by asking participants to “track” a stimulus varying in some property (usually position in space). Tracking is a promising paradigm for the investigation of dynamic features of perception and could be particularly well suited for testing ecologically relevant situations difficult to study with classical psychophysical paradigms. The high rate of data collection may be useful in studies on clinical populations and children, who are unable to undergo long testing sessions. In this study, we designed tracking experiments with two novel stimulus features, numerosity and size, proving the feasibility of the technique outside standard object tracking. We went on to develop an ideal observer model that characterizes the results in terms of efficiency of conversion of stimulus strength into responses, and identification of early and late noise sources. Our ideal observer closely modeled results from human participants, providing a generalized framework for the interpretation of tracking data. The proposed model allows to use the tracking paradigm in various perceptual domains, and to study the divergence of human participants from ideal behavior
ELEMENTARY MECHANICS OF THE MITRAL VALVE
We illustrate a bare-bones mathematical model that is able to account for the elementary mechanics of the mitral valve when the leaflets of the valve close under the systolic pressure. The mechanical model exploits the aspect ratio of the valve leaflets that are represented as inextensible rods, subject to the blood pressure, with one fixed endpoint (on the endocardium) and an attached wire anchored to the papillary muscle. Force and torque balance equations are obtained exploiting the principle of virtual work, where the first contact point between rods is identified by the Weierstrass-Erdmann condition of variational nature. The chordae tendineae are modeled as a force applied to the free endpoint of the flaps. Different possible boundary conditions are investigated at the mitral annulus, and, by an asymptotic analysis, we demonstrate that in the pressure regime of interest generic boundary conditions generate a tensional boundary layer. Conversely, a specific choice of the boundary condition inhibits the generation of high tensional gradients in a small layer
Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications
Resorting to a multiphase modelling framework, tumours are described here as a mixture of tumour and host cells within a porous structure constituted by a remodelling extracellular matrix (ECM), which is wet by a physiological extracellular fluid. The model presented in this article focuses mainly on the description of mechanical interactions of the growing tumour with the host tissue, their influence on tumour growth, and the attachment/detachment mechanisms between cells and ECM. Starting from some recent experimental evidences, we propose to describe the interaction forces involving the extracellular matrix via some concepts coming from viscoplasticity. We then apply the model to the description of the growth of tumour cords and the formation of fibrosis
Modeling brain connectivity dynamics in functional Magnetic Resonance Imaging via Particle Filtering
Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many studies have pointed out that alterations in the interaction among brain areas can play a role as markers of neurological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, but dynamic features of brain connectivity can provide useful information, both on physiology and pathological conditions of the brain. In this paper, we propose the application of a computational methodology, named Particle Filter (PF), to study non-stationarities in brain connectivity in functional Magnetic Resonance Imaging (fMRI). The PF algorithm estimates time-varying hidden parameters of a first-order linear time-varying Vector Autoregressive model (VAR) through a Sequential Monte Carlo strategy. On simulated time series, the PF approach effectively detected and enabled to follow time-varying hidden parameters and it captured causal relationships among signals. The method was also applied to real fMRI data, acquired in presence of periodic tactile or visual stimulations, in different sessions. On these data, the PF estimates were consistent with current knowledge on brain functioning. Most importantly, the approach enabled to detect statistically significant modulations in the cause-effect relationship between brain areas, which correlated with the underlying visual stimulation pattern presented during the acquisition
Assessment of the structures contribution (crystalline and mesophases) and mechanical properties of polycaprolactone/pluronic blends
Films of biodegradable blends of polycaprolactone (PCL) and Pluronics F68 and F127 were manufactured by an
industrial thermo-mechanical process to be applied as potential delivery systems. The effects of Pluronics on the
structure (mesophase organization), and thermal and mechanical properties of polycaprolactone were investigated
using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD),
polarized optical microscopy (POM) and tensile mechanical tests. The addition of Pluronics affected the crystallization
process by changing the relative amounts of crystalline, amorphous, and meso- (condis + plastic)
phases. The melting transition and XRD profiles were deconvoluted to assess the individual contribution of the
different crystal morphologies. Furthermore, it was found that the mechanical properties of the blends depended
on the ratio and type of Pluronic. Thus, Pluronic F127 showed a larger mesophase content than its F68 counterpart
with PCL and blends with enhanced ductilityFunding for open access charge was provided by Universidad de Huelva / CBUA. The authors gratefully acknowledge the financial support
Penetrating particle ANalyzer (PAN)
PAN is a scientific instrument suitable for deep space and interplanetary
missions. It can precisely measure and monitor the flux, composition, and
direction of highly penetrating particles (100 MeV/nucleon) in deep
space, over at least one full solar cycle (~11 years). The science program of
PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar
physics, space weather and space travel. PAN will fill an observation gap of
galactic cosmic rays in the GeV region, and provide precise information of the
spectrum, composition and emission time of energetic particle originated from
the Sun. The precise measurement and monitoring of the energetic particles is
also a unique contribution to space weather studies. PAN will map the flux and
composition of penetrating particles, which cannot be shielded effectively,
precisely and continuously, providing valuable input for the assessment of the
related health risk, and for the development of an adequate mitigation
strategy. PAN has the potential to become a standard on-board instrument for
deep space human travel.
PAN is based on the proven detection principle of a magnetic spectrometer,
but with novel layout and detection concept. It will adopt advanced particle
detection technologies and industrial processes optimized for deep space
application. The device will require limited mass (~20 kg) and power (~20 W)
budget. Dipole magnet sectors built from high field permanent magnet Halbach
arrays, instrumented in a modular fashion with high resolution silicon strip
detectors, allow to reach an energy resolution better than 10\% for nuclei from
H to Fe at 1 GeV/n
Cutaneous Melanomas: A Single Center Experience on the Usage of Immunohistochemistry Applied for the Diagnosis
Cutaneous melanoma (cM) is the deadliest of all primary skin cancers. Its prognosis is strongly influenced by the stage at diagnosis, with early stages having a good prognosis and being potentially treatable with surgery alone; advanced stages display a much worse prognosis, with a high rate of recurrence and metastasis. For this reason, the accurate and early diagnosis of cM is crucial—misdiagnosis may have extremely dangerous consequences for the patient and drastically reduce their chances of survival. Although the histological exam remains the “gold standard” for the diagnosis of cM, a continuously increasing number of immunohistochemical markers that could help in diagnosis, prognostic characterization, and appropriate therapeutical choices are identified every day, with some of them becoming part of routine practice. This review aims to discuss and summarize all the data related to the immunohistochemical analyses that are potentially useful for the diagnosis of cM, thus rendering it easier to appropriately applicate to routine practice. We will discuss these topics, as well as the role of these molecules in the biology of cM and potential impact on diagnosis and treatment, integrating the literature data with the experience of our surgical pathology department
- …