9 research outputs found
Predictive model of biliocystic communication in liver hydatid cysts using classification and regression tree analysis
<p>Abstract</p> <p>Background</p> <p>Incidence of liver hydatid cyst (LHC) rupture ranged 15%-40% of all cases and most of them concern the bile duct tree. Patients with biliocystic communication (BCC) had specific clinic and therapeutic aspect. The purpose of this study was to determine witch patients with LHC may develop BCC using classification and regression tree (CART) analysis</p> <p>Methods</p> <p>A retrospective study of 672 patients with liver hydatid cyst treated at the surgery department "A" at Ibn Sina University Hospital, Rabat Morocco. Four-teen risk factors for BCC occurrence were entered into CART analysis to build an algorithm that can predict at the best way the occurrence of BCC.</p> <p>Results</p> <p><b>I</b>ncidence of BCC was 24.5%. Subgroups with high risk were patients with jaundice and thick pericyst risk at 73.2% and patients with thick pericyst, with no jaundice 36.5 years and younger with no past history of LHC risk at 40.5%. Our developed CART model has sensitivity at 39.6%, specificity at 93.3%, positive predictive value at 65.6%, a negative predictive value at 82.6% and accuracy of good classification at 80.1%. Discriminating ability of the model was good 82%.</p> <p>Conclusion</p> <p>we developed a simple classification tool to identify LHC patients with high risk BCC during a routine clinic visit (only on clinical history and examination followed by an ultrasonography). Predictive factors were based on pericyst aspect, jaundice, age, past history of liver hydatidosis and morphological Gharbi cyst aspect. We think that this classification can be useful with efficacy to direct patients at appropriated medical struct's.</p
The Effects of Transcatheter Valve Crimping on Pericardial Leaflets
BackgroundTranscatheter aortic valve replacement has emerged as a promising therapy for treatment of severe aortic stenosis. Although it has been shown that these valves can be safely delivered and implanted, studies of valve longevity are lacking because of the infancy of the technology. Particularly, the effects of stent crimping on the valve's leaflets have not yet been sufficiently investigated. In this study, we have characterized the effects of crimping on pericardial leaflets in time and through the depth of the tissue.MethodsTo test the structural changes at the surface and deep layers of bovine pericardial leaflets, scanning electron microscopy and second-harmonic generation microscopy were used. An uncrimped tissue sample was imaged, followed by imaging a segment of tissue after crimping in a stented transcatheter valve, immediately after, at 20 minutes, and 60 minutes after crimping. The crimping experiment was performed for multiple crimping sizes (ie, 14F, 16F, and 18F). We defined a damage index that quantifies the level of leaflet structural changes as a result of crimping.ResultsBased on the calculated damage indices and analyses of the raw images, it was determined that crimping does measurable damage to the leaflet tissue that persists with time.ConclusionsSignificant tissue damage was observed at the surface layers of the leaflets. In the deeper tissue layers, damage was substantial for 14F crimping; however, it became less significant but still visible for larger collapse profiles. Crimping may induce substantial structural damage to pericardial leaflets that does not improve with time
Blood Flow Simulations for the Design of Stented Valve Reducer in Enlarged Ventricular Outflow Tracts
International audienceTetralogy of Fallot is a congenital heart disease characterized over time, after the initial repair, by the absence of a functioning pulmonary valve, which causes regurgitation, and by progressive enlargement of the right ventricle outflow tract (RVOT). Due to this pathological anatomy, available transcatheter valves are usually too small to be deployed there. To avoid surgical valve replacement, an alternative consists in implanting a reducer prior to or in combination with the valve. It has been shown in animal experiments to be promising, but with some limitations. The effect of a percutaneous pulmonary valve reducer on hemodynamics in enlarged RVOT is thus studied by computational modeling. To this aim, blood flow in the RVOT is modeled with CFD coupled to a simplified valve model and 0D downstream models. Simulations are performed in an image-based geometry and boundary conditions tuned to reproduce the pathological flow without the device. Different device designs are built and compared with the initial device-free state, or with the reducer alone. Results suggest that pressure loss is higher for the reducer alone than for the full device, and that the latter successfully restores hemodynamics to a healthy state and induces a more symmetric flow in the pulmonary arteries. Moreover, pressure forces on the reducer and on the valve have the same magnitudes. Migration would occur towards the right ventricle rather than the pulmonary arteries. Results support the thesis that the reducer does not introduce clinically significant pressure gradients, as was found in animal experiments. Such study could help transfer to patients