421 research outputs found
A model for the orientational ordering of the plant microtubule cortical array
The plant microtubule cortical array is a striking feature of all growing
plant cells. It consists of a more or less homogeneously distributed array of
highly aligned microtubules connected to the inner side of the plasma membrane
and oriented transversely to the cell growth axis. Here we formulate a
continuum model to describe the origin of orientational order in such confined
arrays of dynamical microtubules. The model is based on recent experimental
observations that show that a growing cortical microtubule can interact through
angle dependent collisions with pre-existing microtubules that can lead either
to co-alignment of the growth, retraction through catastrophe induction or
crossing over the encountered microtubule. We identify a single control
parameter, which is fully determined by the nucleation rate and intrinsic
dynamics of individual microtubules. We solve the model analytically in the
stationary isotropic phase, discuss the limits of stability of this isotropic
phase, and explicitly solve for the ordered stationary states in a simplified
version of the model.Comment: 15 pages, 5 figure
Beam Performance of Tracking Detectors with Industrially Produced GEM Foils
Three Gas-Electron-Multiplier tracking detectors with an active area of 10 cm
x 10 cm and a two-dimensional, laser-etched orthogonal strip readout have been
tested extensively in particle beams at the Meson Test Beam Facility at
Fermilab. These detectors used GEM foils produced by Tech-Etch, Inc. They
showed an efficiency in excess of 95% and spatial resolution better than 70 um.
The influence of the angle of incidence of particles on efficiency and spatial
resolution was studied in detail.Comment: 8 pages, 9 figures, accepted by Nuclear Instruments and Methods in
Physics Research
Indication on the universal hadron substructure - constituent quarks
The universality of single-spin asymmetry on inclusive pi-meson production is
discussed. This universality can be related to the hadron substructure -
constituent quarks.Comment: 3 pages, 3 figures, references adde
Breathers in the weakly coupled topological discrete sine-Gordon system
Existence of breather (spatially localized, time periodic, oscillatory)
solutions of the topological discrete sine-Gordon (TDSG) system, in the regime
of weak coupling, is proved. The novelty of this result is that, unlike the
systems previously considered in studies of discrete breathers, the TDSG system
does not decouple into independent oscillator units in the weak coupling limit.
The results of a systematic numerical study of these breathers are presented,
including breather initial profiles and a portrait of their domain of existence
in the frequency-coupling parameter space. It is found that the breathers are
uniformly qualitatively different from those found in conventional spatially
discrete systems.Comment: 19 pages, 4 figures. Section 4 (numerical analysis) completely
rewritte
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Nonlinear Regge trajectories and glueballs
We apply a phenomenological approach based on nonlinear Regge trajectories to
glueball states. The parameters, i.e., intercept and threshold, or trajectory
termination point beyond which no bound states should exist, are determined
from pomeron (scattering) data. Systematic errors inherent to the approach are
discussed. We then predict masses of glueballs on the tensor trajectory. For
comparison, the approach is applied to available quenched lattice data. We find
a discrepancy between the lattice based thresholds and the pomeron threshold
that we extract from data.Comment: 15pp., revtex4, 2 fig
Proton-proton scattering above 3 GeV/c
A large set of data on proton-proton differential cross sections, analyzing
powers and the double polarization parameter A_NN is analyzed employing the
Regge formalism. We find that the data available at proton beam momenta from 3
GeV/c to 50 GeV/c exhibit features that are very well in line with the general
characteristics of Regge phenomenology and can be described with a model that
includes the rho, omega, f_2, and a_2 trajectories and single Pomeron exchange.
Additional data, specifically for spin-dependent observables at forward angles,
would be very helpful for testing and refining our Regge model.Comment: 16 pages, 19 figures; revised version accepted for publication in
EPJ
A Descent Method for Equality and Inequality Constrained Multiobjective Optimization Problems
In this article we propose a descent method for equality and inequality
constrained multiobjective optimization problems (MOPs) which generalizes the
steepest descent method for unconstrained MOPs by Fliege and Svaiter to
constrained problems by using two active set strategies. Under some regularity
assumptions on the problem, we show that accumulation points of our descent
method satisfy a necessary condition for local Pareto optimality. Finally, we
show the typical behavior of our method in a numerical example
Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV
A tagged medium-energy neutron beam has been used in a precise measurement of
the absolute differential cross section for np back-scattering. The results
resolve significant discrepancies within the np database concerning the angular
dependence in this regime. The experiment has determined the absolute
normalization with 1.5% uncertainty, suitable to verify constraints of
supposedly comparable precision that arise from the rest of the database in
partial wave analyses. The analysis procedures, especially those associated
with evaluation of systematic errors in the experiment, are described in detail
so that systematic uncertainties may be included in a reasonable way in
subsequent partial wave analysis fits incorporating the present results.Comment: 22 pages, 21 figures, submitted for publication in Physical Review
- …