33 research outputs found

    Laminar-specific distribution of zinc: Evidence for presence of layer IV in forelimb motor cortex in the rat

    No full text
    ยฉ 2014 Elsevier Inc.The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways

    Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats

    No full text
    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the d(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy

    ะ”ะธะฝะฐะผะธะบะฐ ะธะทะผะตะฝะตะฝะธั ะผะธะฝะธะผะฐะปัŒะฝั‹ั… ัƒั€ะพะฒะฝะตะน ะธ ั€ะฐัั…ะพะดะพะฒ ะฝะฐ ั€ะตะบะต ะœั‚ะบะฒะฐั€ะธ (ะœะธะฝะฐะดะทะต).

    No full text
    แƒ›แƒแƒงแƒ•แƒแƒœแƒ˜แƒšแƒ˜แƒ แƒแƒ แƒ˜ แƒ›แƒแƒ’แƒแƒšแƒ˜แƒ—แƒ˜ แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒขแƒ˜แƒกแƒแƒ–แƒ” แƒ“แƒ แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ›แƒขแƒ™แƒ•แƒแƒ แƒ–แƒ” แƒ›แƒ˜แƒœแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒ“แƒแƒœแƒ”แƒ”แƒ‘แƒ˜แƒก แƒชแƒ•แƒแƒšแƒ”แƒ‘แƒแƒ“แƒแƒ‘แƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘, แƒกแƒแƒ“แƒแƒช แƒ“แƒแƒ™แƒ•แƒ˜แƒ แƒ•แƒ”แƒ‘แƒฃแƒšแƒ˜ แƒ›แƒแƒœแƒแƒชแƒ”แƒ›แƒ”แƒ‘แƒ˜ แƒแƒ แƒแƒ”แƒ แƒ—แƒ’แƒ•แƒแƒ แƒแƒ•แƒแƒœแƒ˜แƒ. แƒ”แƒ แƒ—แƒ’แƒ•แƒแƒ แƒแƒ•แƒœแƒ”แƒ‘แƒ แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ›แƒขแƒ™แƒ•แƒแƒ แƒ–แƒ” แƒ แƒแƒ’แƒแƒ แƒช แƒฉแƒแƒœแƒก แƒ“แƒแƒ แƒฆแƒ•แƒ”แƒฃแƒšแƒ˜แƒ แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ˜แƒก (1110 แƒ›/แƒฌแƒ›) แƒ’แƒแƒ•แƒšแƒ˜แƒก แƒ’แƒแƒ›แƒ, แƒ แƒแƒ›แƒแƒช แƒ’แƒแƒ›แƒแƒ˜แƒฌแƒ•แƒ˜แƒ แƒ™แƒแƒšแƒแƒžแƒแƒขแƒ˜แƒก แƒ“แƒ”แƒคแƒแƒ แƒ›แƒแƒชแƒ˜แƒ, แƒแƒ›แƒ˜แƒขแƒแƒ› แƒขแƒ แƒ”แƒœแƒ“แƒ˜แƒก แƒจแƒ”แƒคแƒแƒกแƒ”แƒ‘แƒ˜แƒกแƒแƒก (แƒ›แƒ˜แƒœแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒ“แƒแƒœแƒ”แƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ›แƒ—แƒฎแƒ•แƒ”แƒ•แƒแƒจแƒ˜) แƒแƒฃแƒชแƒ˜แƒšแƒ”แƒ‘แƒ”แƒšแƒ˜แƒ แƒžแƒ แƒแƒชแƒ”แƒกแƒ˜แƒก แƒ”แƒฅแƒกแƒขแƒ แƒ”แƒ›แƒแƒšแƒฃแƒ  แƒจแƒ”แƒ›แƒ—แƒฎแƒ•แƒ”แƒ•แƒแƒ—แƒ แƒ“แƒ แƒ›แƒแƒ—แƒ˜ แƒจแƒ”แƒ“แƒ”แƒ’แƒ”แƒ‘แƒ˜แƒก แƒ“แƒ”แƒขแƒแƒšแƒฃแƒ แƒ˜ แƒแƒœแƒแƒšแƒ˜แƒ–แƒ˜ แƒ’แƒแƒœแƒกแƒแƒฎแƒ˜แƒšแƒ•แƒ”แƒšแƒ˜ แƒ แƒ˜แƒ’แƒ˜แƒก แƒ”แƒ แƒ—แƒ’แƒ•แƒแƒ แƒแƒ•แƒœแƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒคแƒแƒกแƒ”แƒ‘แƒ˜แƒ— แƒ“แƒ แƒ›แƒแƒ—แƒ˜ แƒ“แƒแƒ แƒฆแƒ•แƒ”แƒ•แƒ˜แƒก แƒ›แƒ˜แƒ–แƒ”แƒ–แƒ”แƒ‘แƒ˜แƒก แƒ’แƒแƒ›แƒแƒ•แƒšแƒ”แƒœแƒ˜แƒ—.Two examples are given on the change in the minimum levels on the Tisa and Mtkvari rivers, where the observation data are heterogeneous. The homogeneity on the Mtkvari River is evidently violated as a result of passing the maximum flow rate (1110 m3 / s), which caused the bed deformation, therefore, when assessing the trend (in the case of the minimum levels), a detailed analysis of the extreme cases of the process and their results is required with an assessment of homogeneity of the considered line and reasons of their violationะŸั€ะธะฒะตะดะตะฝั‹ ะดะฒะฐ ะฟั€ะธะผะตั€ะฐ ะพะฑ ะธะทะผะตะฝะตะฝะธะธ ะผะธะฝะธะผะฐะปัŒะฝะพะณะพ ัƒั€ะพะฒะฝั ะฝะฐ ั€ะตะบะฐั… ะขะธัะฐ ะธ ะขะบะฒะฐั€ะธ, ะณะดะต ะดะฐะฝะฝั‹ะต ะฝะฐะฑะปัŽะดะตะฝะธั ะฝะตะพะดะฝะพั€ะพะดะฝั‹. ะžะดะฝะพั€ะพะดะฝะพัั‚ัŒ ะฝะฐ ั€ะตะบะต ะœั‚ะบะฒะฐั€ะธ, ะบะฐะบ ะฒะธะดะฝะพ, ะฝะฐั€ัƒัˆะตะฝะฐ ะฒ ั€ะตะทัƒะปัŒั‚ะฐั‚ะต ะฟั€ะพั…ะพะถะดะตะฝะธั ะผะฐะบัะธะผะฐะปัŒะฝะพะณะพ ั€ะฐัั…ะพะดะฐ (1110 ะผ3/ัะตะบ.), ั‡ั‚ะพ ะฒั‹ะทะฒะฐะปะพ ะดะตั„ะพั€ะผะฐั†ะธัŽ ั€ัƒัะปะฐ, ะฟะพัั‚ะพะผัƒ ะฟั€ะธ ะพั†ะตะฝะบะต ั‚ั€ะตะฝะดะฐ (ะฒ ัะปัƒั‡ะฐะต ะผะธะฝะธะผะฐะปัŒะฝะพะณะพ ัƒั€ะพะฒะฝั) ะพะฑัะทะฐั‚ะตะปะตะฝ ะดะตั‚ะฐะปัŒะฝั‹ะน ะฐะฝะฐะปะธะท ัะบัั‚ั€ะตะผะฐะปัŒะฝั‹ั… ัะปัƒั‡ะฐะตะฒ ะฟั€ะพั†ะตััะฐ ะธ ะธั… ั€ะตะทัƒะปัŒั‚ะฐั‚ะพะฒ ั ะพั†ะตะฝะบะพะน ะพะดะฝะพั€ะพะดะฝะพัั‚ะธ ั€ะฐััะผะฐั‚ั€ะธะฒะฐะตะผะพะณะพ ั€ัะดะฐ ะธ ะฟั€ะธั‡ะธะฝ ะฝะฐั€ัƒัˆะตะฝะธั

    Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation

    No full text
    Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ยฑ 8%) than the NP-St rats (15 ยฑ 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery

    ะžั†ะตะฝะบะฐ ะธะทะผะตะฝั‡ะธะฒะพัั‚ะธ ัƒั€ะพะฒะฝะตะน ะพั‚ะดะตะปัŒะฝั‹ั… ะผะตััั†ะต ะฝะฐ ั€ะตะบะต ะ˜ะฝะณัƒั€ะธ ัั‚ะฐะฝั†ะธั ะฅะฐะธัˆะธ

    No full text
    แƒ›แƒแƒงแƒ•แƒแƒœแƒ˜แƒšแƒ˜แƒ แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ”แƒœแƒ’แƒฃแƒ แƒ–แƒ” แƒก. แƒฎแƒแƒ˜แƒจแƒ—แƒแƒœ แƒชแƒแƒšแƒ™แƒ”แƒฃแƒšแƒ˜ แƒ—แƒ•แƒ”แƒ”แƒ‘แƒ˜แƒก แƒ“แƒแƒœแƒ”แƒ”แƒ‘แƒ˜แƒก แƒชแƒ•แƒแƒšแƒ”แƒ‘แƒแƒ“แƒแƒ‘แƒ˜แƒก แƒจแƒ”แƒกแƒแƒฎแƒ”แƒ‘, แƒกแƒแƒ“แƒแƒช แƒ“แƒแƒ™แƒ•แƒ˜แƒ แƒ•แƒ”แƒ‘แƒ˜แƒก แƒกแƒแƒฌแƒงแƒ˜แƒก แƒ”แƒขแƒแƒžแƒ–แƒ” แƒฌแƒงแƒšแƒ˜แƒก แƒ“แƒแƒœแƒ˜แƒก แƒ›แƒแƒœแƒแƒชแƒ”แƒ›แƒ”แƒ‘แƒ˜ แƒกแƒแƒ™แƒ›แƒแƒแƒ“ แƒ“แƒแƒ‘แƒแƒšแƒ˜แƒ แƒ“แƒ แƒ’แƒแƒ›แƒแƒฌแƒ•แƒ”แƒฃแƒšแƒ˜แƒ แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ”แƒ‘แƒ˜แƒ—, แƒ แƒ˜แƒก แƒ’แƒแƒ›แƒแƒช แƒ“แƒแƒ แƒฆแƒ•แƒ”แƒฃแƒšแƒ˜แƒ แƒžแƒ แƒแƒชแƒ”แƒกแƒ˜แƒก แƒ”แƒ แƒ—แƒ’แƒ•แƒแƒ แƒแƒ•แƒœแƒ”แƒ‘แƒ. แƒแƒ›แƒแƒกแƒ—แƒแƒœแƒแƒ•แƒ”, แƒขแƒ แƒ”แƒœแƒ“แƒ˜แƒก แƒจแƒ”แƒคแƒแƒกแƒ”แƒ‘แƒ˜แƒก แƒกแƒแƒ™แƒ˜แƒ—แƒฎแƒ˜ แƒ—แƒแƒœแƒแƒ›แƒ”แƒ“แƒ แƒแƒ•แƒ” แƒžแƒ˜แƒ แƒแƒ‘แƒ”แƒ‘แƒจแƒ˜ แƒ›แƒ”แƒขแƒแƒ“ แƒแƒฅแƒขแƒฃแƒแƒšแƒฃแƒ แƒ˜ แƒ’แƒแƒฎแƒ“แƒ, แƒ แƒแƒ“แƒ’แƒแƒœ แƒซแƒแƒšแƒ–แƒ”แƒ“ แƒ›แƒœแƒ˜แƒจแƒ•แƒœแƒ”แƒšแƒแƒ•แƒแƒœแƒ˜แƒ แƒฐแƒ˜แƒ“แƒ แƒแƒ›แƒ”แƒขแƒ”แƒแƒ แƒแƒšแƒแƒ’แƒ˜แƒฃแƒ แƒ˜ แƒžแƒ แƒแƒชแƒ”แƒกแƒ”แƒ‘แƒ˜แƒก แƒกแƒ˜แƒ“แƒ˜แƒ“แƒ”แƒ—แƒ แƒชแƒ•แƒแƒšแƒ”แƒ‘แƒแƒ“แƒแƒ‘แƒ˜แƒก แƒ“แƒ˜แƒœแƒแƒ›แƒ˜แƒ™แƒ˜แƒก แƒจแƒ”แƒกแƒฌแƒแƒ•แƒšแƒ, แƒ›แƒแƒ—แƒ–แƒ” แƒ™แƒšแƒ˜แƒ›แƒแƒขแƒ˜แƒก แƒชแƒ•แƒšแƒ˜แƒšแƒ”แƒ‘แƒ˜แƒก แƒ–แƒ”แƒ’แƒแƒ•แƒšแƒ”แƒœแƒ˜แƒก แƒžแƒ˜แƒ แƒแƒ‘แƒ”แƒ‘แƒจแƒ˜.It discusses the variability of individual month levels on the Enguri river station Khaisi, where the water level data at the initial stage of observation is quite low and caused by floods, thus disrupting the uniformity of the process. At the same time, the issue of estimating the trend has become more relevant in modern conditions, as it is very important to study the dynamics of the magnitude of variations in hydrometeorological processes under the influence of climate change.ะŸั€ะธะฒะตะดะตะฝั‹ ะธะทะผะตะฝั‡ะธะฒะพัั‚ ัƒั€ะพะฒะฝะตะน ะพั‚ะดะตะปัŒะฝั‹ั… ะผะตััั†ะตะฒ ะฝะฐ ั€ะตะบะต ะ˜ะฝะณัƒั€ะธ ัั‚ะฐะฝั†ะธั ะฅะฐะธัˆะธ, ะณะดะต ะดะฐะฝะฝั‹ะต ะพะฑ ัƒั€ะพะฒะฝะต ะฒะพะดั‹ ะฝะฐ ะฝะฐั‡ะฐะปัŒะฝะพะผ ัั‚ะฐะฟะต ะฝะฐะฑะปัŽะดะตะฝะธั ะดะพะฒะพะปัŒะฝะพ ะฝะธะทะบะธ ะธ ะฒั‹ะทะฒะฐะฝั‹ ะฟะพะฒะพะดะบะฐะผะธ, ั‡ั‚ะพ ะฝะฐั€ัƒัˆะฐะตั‚ ั€ะฐะฒะฝะพะผะตั€ะฝะพัั‚ัŒ ะฟั€ะพั†ะตััะฐ. ะ’ ั‚ะพ ะถะต ะฒั€ะตะผั ะฒะพะฟั€ะพั ะพั†ะตะฝะบะธ ั‚ั€ะตะฝะดะฐ ัั‚ะฐะป ะฑะพะปะตะต ะฐะบั‚ัƒะฐะปัŒะฝั‹ะผ ะฒ ัะพะฒั€ะตะผะตะฝะฝั‹ั… ัƒัะปะพะฒะธัั…, ั‚ะฐะบ ะบะฐะบ ะพั‡ะตะฝัŒ ะฒะฐะถะฝะพ ะธะทัƒั‡ะธั‚ัŒ ะดะธะฝะฐะผะธะบัƒ ะฒะตะปะธั‡ะธะฝั‹ ะฒะฐั€ะธะฐั†ะธะน ะณะธะดั€ะพะผะตั‚ะตะพั€ะพะปะพะณะธั‡ะตัะบะธั… ะฟั€ะพั†ะตััะพะฒ ะฟะพะด ะฒะปะธัะฝะธะตะผ ะธะทะผะตะฝะตะฝะธั ะบะปะธะผะฐั‚ะฐ

    Elemental characterisation of the pyramidal neuron layer within the rat and mouse hippocampus.

    No full text
    A unique combination of sensitivity, resolution, and penetration make X-ray fluorescence imaging (XFI) ideally suited to investigate trace elemental distributions in the biological context. XFI has gained widespread use as an analytical technique in the biological sciences, and in particular enables exciting new avenues of research in the field of neuroscience. In this study, elemental mapping by XFI was applied to characterise the elemental content within neuronal cell layers of hippocampal sub-regions of mice and rats. Although classical histochemical methods for metal detection exist, such approaches are typically limited to qualitative analysis. Specifically, histochemical methods are not uniformly sensitive to all chemical forms of a metal, often displaying variable sensitivity to specific "pools" or chemical forms of a metal. In addition, histochemical methods require fixation and extensive chemical treatment of samples, creating the strong likelihood for metal redistribution, leaching, or contamination. Direct quantitative elemental mapping of total elemental pools, in situ within ex vivo tissue sections, without the need for chemical fixation or addition of staining reagents is not possible with traditional histochemical methods; however, such a capability, which is provided by XFI, can offer an enormous analytical advantage. The results we report herein demonstrate the analytical advantage of XFI elemental mapping for direct, label-free metal quantification, in situ within ex vivo brain tissue sections. Specifically, we definitively characterise for the first time, the abundance of Fe within the pyramidal cell layers of the hippocampus. Localisation of Fe to this cell layer is not reproducibly achieved with classical Perls histochemical Fe stains. The ability of XFI to directly quantify neuronal elemental (P, S, Cl, K, Ca, Fe, Cu, Zn) distributions, revealed unique profiles of Fe and Zn within anatomical sub-regions of the hippocampus i.e., cornu ammonis 1, 2 or 3 (CA1, CA2 or CA3) sub-regions. Interestingly, our study reveals a unique Fe gradient across neuron populations within the non-degenerating and pathology free rat hippocampus, which curiously mirrors the pattern of region-specific vulnerability of the hippocampus that has previously been established to occur in various neurodegenerative diseases

    Calculation of the maximum discharges of river freshets in the case of the Vere River

    No full text
    แƒ แƒแƒ’แƒแƒ แƒช แƒ“แƒแƒ™แƒ•แƒ˜แƒ แƒ•แƒ”แƒ‘แƒ”แƒ‘แƒ˜แƒ“แƒแƒœ แƒฉแƒแƒœแƒก, แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ•แƒ”แƒ แƒ”แƒก แƒฐแƒ˜แƒ“แƒ แƒแƒšแƒแƒ’แƒ˜แƒฃแƒ แƒ˜ แƒ แƒ”แƒŸแƒ˜แƒ›แƒ˜, แƒฌแƒšแƒ˜แƒก แƒ—แƒ‘แƒ˜แƒš แƒžแƒ”แƒ แƒ˜แƒแƒ“แƒจแƒ˜, แƒฃแƒ”แƒชแƒแƒ แƒ˜ แƒ—แƒแƒ•แƒกแƒฎแƒ›แƒ แƒฌแƒ•แƒ˜แƒ›แƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ“แƒ”แƒ’แƒแƒ“, แƒฎแƒแƒกแƒ˜แƒแƒ—แƒ“แƒ”แƒ‘แƒ แƒ“แƒ˜แƒ“แƒ˜ แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ”แƒ‘แƒ˜แƒ—. แƒ™แƒšแƒ˜แƒ›แƒแƒขแƒ˜แƒก แƒ’แƒšแƒแƒ‘แƒแƒšแƒฃแƒ  แƒชแƒ•แƒšแƒ˜แƒšแƒ”แƒ‘แƒแƒกแƒ—แƒแƒœ แƒ“แƒแƒ™แƒแƒ•แƒจแƒ˜แƒ แƒ”แƒ‘แƒ˜แƒ—, แƒ’แƒแƒœแƒกแƒแƒ™แƒฃแƒ—แƒ แƒ”แƒ‘แƒ˜แƒ— 1990-แƒ˜แƒแƒœแƒ˜ แƒฌแƒšแƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ›แƒ“แƒ’แƒแƒ›แƒ˜ แƒžแƒ”แƒ แƒ˜แƒแƒ“แƒ˜แƒ“แƒแƒœ, แƒ’แƒแƒฎแƒจแƒ˜แƒ แƒ“แƒ แƒ›แƒแƒ—แƒ˜ แƒ แƒแƒแƒ“แƒ”แƒœแƒแƒ‘แƒ แƒ“แƒ แƒกแƒ˜แƒซแƒšแƒ˜แƒ”แƒ แƒ”. แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ”แƒ‘แƒ˜แƒก แƒ’แƒแƒ—แƒ•แƒšแƒ แƒจแƒ”แƒ–แƒ˜แƒก แƒคแƒแƒ แƒ›แƒฃแƒšแƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒซแƒ˜แƒ แƒ˜แƒ—แƒแƒ“แƒแƒ“ แƒ›แƒแƒชแƒ”แƒ›แƒฃแƒšแƒ˜แƒ แƒชแƒฎแƒ แƒ˜แƒšแƒ˜ 1-แƒ˜แƒก แƒกแƒแƒฎแƒ˜แƒ—. แƒกแƒขแƒแƒขแƒ˜แƒแƒจแƒ˜, แƒ›แƒแƒ’แƒแƒšแƒ˜แƒ—แƒ˜แƒก แƒกแƒแƒฎแƒ˜แƒ—, แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ•แƒ”แƒ แƒ”แƒ–แƒ” 2015 แƒฌแƒšแƒ˜แƒก 14 แƒ˜แƒ•แƒœแƒ˜แƒกแƒ˜แƒก แƒ™แƒแƒขแƒแƒกแƒขแƒ แƒแƒคแƒฃแƒšแƒ˜ แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ˜แƒก แƒฎแƒแƒ แƒฏแƒ˜แƒก แƒ’แƒแƒ—แƒ•แƒšแƒ แƒœแƒแƒคแƒ”แƒขแƒ•แƒ แƒ”แƒ‘แƒ˜แƒก แƒฎแƒ”แƒ•แƒ˜แƒก แƒจแƒ”แƒ”แƒ แƒ—แƒ”แƒ‘แƒ˜แƒก แƒจแƒ”แƒ›แƒ“แƒ”แƒ’ แƒ›แƒ˜แƒ›แƒ“แƒ”แƒ‘แƒแƒ แƒ” แƒ™แƒ•แƒ”แƒ—แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก แƒ›แƒแƒชแƒ”แƒ›แƒฃแƒšแƒ˜แƒ 2 แƒ›แƒ”แƒ—แƒแƒ“แƒ˜แƒ— - แƒกแƒแƒ™แƒแƒšแƒแƒ•แƒกแƒ™แƒ˜แƒก แƒ“แƒ แƒจแƒ”แƒ–แƒ˜แƒก แƒคแƒแƒ แƒ›แƒฃแƒšแƒ”แƒ‘แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ—, แƒฎแƒแƒšแƒ แƒœแƒแƒคแƒ”แƒขแƒ•แƒ แƒ”แƒ‘แƒ˜แƒก แƒฎแƒ”แƒ•แƒ—แƒแƒœ แƒ’แƒแƒ—แƒ•แƒšแƒ˜แƒšแƒ˜ แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ˜แƒก แƒ›แƒ˜แƒฎแƒ”แƒ“แƒ•แƒ˜แƒ— แƒšแƒแƒ‘แƒแƒ แƒแƒขแƒแƒ แƒ˜แƒ˜แƒก แƒ™แƒ•แƒ”แƒ—แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก แƒ“แƒ แƒ›แƒ—แƒšแƒ˜แƒแƒœแƒแƒ“ แƒ›แƒ“แƒ˜แƒœแƒแƒ แƒ” แƒ•แƒ”แƒ แƒ”แƒก แƒแƒฃแƒ–แƒ˜แƒกแƒแƒ—แƒ•แƒ˜แƒก แƒ›แƒแƒ—แƒ˜ แƒคแƒแƒ แƒ—แƒแƒ‘แƒ”แƒ‘แƒ˜แƒก แƒคแƒแƒ แƒ“แƒแƒ‘แƒ˜แƒ—แƒ˜ แƒ™แƒแƒ”แƒคแƒ˜แƒชแƒ˜แƒ”แƒœแƒขแƒ”แƒ‘แƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒ›แƒ˜แƒฆแƒ”แƒ‘แƒฃแƒšแƒ˜แƒ 14 แƒ˜แƒ•แƒœแƒ˜แƒกแƒ˜แƒก แƒ™แƒแƒขแƒแƒกแƒขแƒ แƒแƒคแƒฃแƒšแƒ˜ แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ˜แƒก แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ”แƒ‘แƒ˜แƒก แƒ›แƒœแƒ˜แƒจแƒ•แƒœแƒ”แƒšแƒแƒ‘แƒ”แƒ‘แƒ˜ แƒจแƒ”แƒกแƒแƒ‘แƒแƒ›แƒ˜แƒกแƒแƒ“ 477 แƒ“แƒ 512 แƒ›3 /แƒฌแƒ› แƒแƒ“แƒ”แƒœแƒแƒ‘แƒ˜แƒ—. แƒแƒ›แƒแƒกแƒ—แƒแƒœแƒแƒ•แƒ”, แƒฃแƒœแƒ“แƒ แƒแƒฆแƒ˜แƒœแƒ˜แƒจแƒœแƒแƒก, แƒ แƒแƒ› แƒœแƒแƒคแƒ”แƒขแƒ•แƒ แƒ”แƒ‘แƒ˜แƒก แƒฎแƒ”แƒ•แƒ—แƒแƒœ แƒแƒ แƒกแƒ”แƒ‘แƒฃแƒšแƒ˜ แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ”แƒ‘แƒ˜แƒก แƒกแƒแƒ›แƒ˜แƒ•แƒ” แƒจแƒ”แƒ“แƒ”แƒ’แƒ˜แƒก แƒจแƒ”แƒ“แƒแƒ แƒ”แƒ‘แƒ˜แƒ— แƒฉแƒแƒœแƒก, แƒ แƒแƒ› แƒ˜แƒกแƒ˜แƒœแƒ˜ แƒกแƒแƒ™แƒ›แƒแƒแƒ“ แƒแƒฎแƒšแƒแƒก แƒแƒ แƒ˜แƒแƒœ แƒ”แƒ แƒ—แƒ›แƒแƒœแƒ”แƒ—แƒ—แƒแƒœ, แƒ แƒแƒช แƒ›แƒ˜แƒ’แƒ•แƒแƒœแƒ˜แƒจแƒœแƒ”แƒ‘แƒก แƒฉแƒ•แƒ”แƒœแƒก แƒ›แƒ˜แƒ”แƒ  แƒšแƒแƒ‘แƒแƒ แƒแƒขแƒแƒ แƒ˜แƒ˜แƒก แƒ™แƒ•แƒ”แƒ—แƒจแƒ˜ 1990-แƒ˜แƒแƒœแƒ˜ แƒฌแƒšแƒ”แƒ‘แƒ˜แƒ“แƒแƒœ แƒ›แƒแƒงแƒแƒšแƒ”แƒ‘แƒฃแƒšแƒ˜ แƒ“แƒฆแƒ”แƒ•แƒแƒœแƒ“แƒ”แƒš แƒ“แƒฆแƒ”แƒ›แƒ“แƒ” แƒจแƒ”แƒ–แƒ˜แƒก แƒคแƒแƒ แƒ›แƒฃแƒšแƒ˜แƒก แƒ’แƒแƒ›แƒแƒงแƒ”แƒœแƒ”แƒ‘แƒ˜แƒ— แƒ’แƒแƒ—แƒ•แƒšแƒ˜แƒšแƒ˜ แƒฌแƒงแƒแƒšแƒ›แƒแƒ•แƒแƒ แƒ“แƒœแƒ”แƒ‘แƒ˜แƒก แƒ›แƒแƒฅแƒกแƒ˜แƒ›แƒแƒšแƒฃแƒ แƒ˜ แƒฎแƒแƒ แƒฏแƒ”แƒ‘แƒ˜แƒก แƒกแƒแƒ˜แƒ›แƒ”แƒ“แƒแƒแƒ‘แƒแƒ–แƒ”.As the observations show, the hydrological regime of the Vere River, in the warm period of the year, as a result of sudden heavy rains, is characterized by large freshets. Due to global climate change, especially since the 1990s, their number and intensity have increased. Calculation of the maximum discharges of freshets using Chezy formula is mainly given in the form of Table 1. In the article, as an example, the calculation of the discharge of the catastrophic freshet on the Vere River on 14 June 2015 for the adjacent section after the connection of the Napetvrebi ravine is given by 2 methods - using the Sokolovsky and Chezy formulas, and according to the maximum discharge calculated at the Napetvrebi ravine for the laboratory section and for the entire Vere river basin using the relative coefficients of their areas, the values of the maximum discharges of the June 14 catastrophic freshet were obtained in the amount of 477 and 512 m 3 /s, respectively. In addition, it should be noted that comparing all three results of the maximum discharges at Napetvrebi ravine, it can be seen that they are quite close to each other, which indicates the credibility of the maximum discharges of freshets calculated by us in the laboratory section from the 1990s to the present day using the Chezy formula
    corecore