14 research outputs found

    Magnetic Nanoparticles as a Redispersing Additive in Magnetorheological Fluid

    Get PDF
    Unwanted agglomeration of micro particles in magnetorheological fluid is an important problem for many technological applications. Furthermore, the stability of this kind of fluid is also studied as an important property in many research papers. Prior to use, a redispersion of agglomerated or aggregated (connected by solid phase) particles is often necessary. The objective of this study is to evaluate the dispersibility effect of magnetic nanoparticles as a carrier, while keeping the magnetorheological (MR) effect as high as possible. A simple device based on the estimation of the penetration force of a standard needle is presented. The needle moves across the sample vertically with a constant velocity and it is attached to a scale which registers the force displaced by the needle during the dynamic test. The effect with and without other additives was also studied. Transmission electron microscopy (TEM) and Scanning Electron Microscopy (SEM) reveal a protective behavior of nanoparticles around the micro particles. We conclude that addition of magnetic nanoparticles improves the dispersibility characteristic compared with common dispersing additives without affecting the MR effect

    Synergy between magneto-rheological fluids and aluminum foams. Prospective alternative for seismic damping

    Get PDF
    This is the accepted manuscript. Access to the published article can be gained at: http://jim.sagepub.com/cgi/reprint/1045389X15596624v1.pdf?ijkey=SyFHNQwE4XMQqBF&keytype=finiteThis article presents the experimental study of a preliminary investigation of a seismic damper device aimed at improving the behavior of structures when subjected to earthquakes. The damper is the result of a binomial material formed by aluminum foam with pores 1 mm in diameter, wetted by a magnetorheological fluid (MRF). The objective of the present work is to explore the synergy between the two components in a magnetorheological test, and to evaluate the effect of the Al foam pores in the structure buildup of the fluid. The analysis is completed with a compressive test carried out on the MRF-filled foam in the presence of a magnetic field. This kind of test demonstrates that the deformation of the foam for very small loads is limited by the hardening of the fluid because of its MR response. The results of this research suggest that there is a mutual benefit between the components of the device, presumably leading to an enhanced dissipation of vibration energy.Proyectos PE2012-FQM694 (Junta de Andalucía, Spain), FIS2013-47666-C3-1-R (MINECO, Spain), SENER-CONACYT "151496" (UNAM Mexico), CONACYT National Quality Graduate Progra

    Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    Get PDF
    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro. Inhibition of Wnt/β-catenin by magnesium is one potential intracellular mechanism by which this anti-calcifying effect is achieved

    Current international projects in the Duero and Miño-Sil basins

    Get PDF
    [EN] This paper summarizes the research work that is being carried out within the framework of three international projects with a lifetime between 2022 and 2026: (1) LIFE-IP-Duero; (2) Supporting stakeholders for adaptive, resilience and sustainable water management; (3) IGCP- 730. (1) and (2) are developed in the Duero river basin and are funded by the European Commission meanwhile (3) is being developed in the Duero and Miño-Sil basins and is funded by the International Geosciences Programme (IGCP) of UNESCO.Peer reviewe
    corecore