10 research outputs found

    A coupled model of wave-driven erosion for the Palanga Beach, Lithuania

    Full text link

    Study of ice cover impact on hydrodynamic processes in the Curonian Lagoon through numerical modeling

    Get PDF
    Summary In this study, we present an analysis of the hydrodynamic processes under ice cover in the largest lagoon in Europe – the Curonian Lagoon. By applying a finite element numerical modelling system (SHYFEM) and remote sensing ice cover data, the residual circulation, water fluxes through specific areas of the lagoon, saltwater intrusions, and water residence time (WRT) were investigated. The results, taken over an 11 year period, show that ice cover affects the circulation patterns in the lagoon by forming and shifting different gyre systems. Different circulation patterns are observed throughout all the meteorological seasons of the year. Since ice decreases circulation, water fluxes also decrease, especially in a cross-section in the middle of the lagoon, where the ice-cover suppressed wind-stress has a higher impact on the water movement rather than it has in the north. The presence of ice cover also decreases the salinity of the water in the northern part of the lagoon. In general, the salinity in the water column-averaged over different periods is vertically uniform, however, a slight increase of salt concentration can be observed at the bottom layers in the Klaipėda Strait, where the difference of >1 PSU between bottom and top layers shows up on average 130 hours per year. The ice cover also decreases the saltwater intrusions into the lagoon by nearly 14 days per year. The increase of WRT is most prominent after long ice cover periods, away from the river inlets, especially in the southern part of the lagoon, where without the help of the wind action, water takes a longer time to renew than in the northern part

    Sediment transport mechanisms in a lagoon with high river discharge and sediment loading

    No full text
    The aim of this study was to investigate the sediment dynamics in the largest lagoon in Europe (Curonian Lagoon, Lithuania) through the analysis of in situ data and the application of a sediment transport model. This approach allowed to identify the propagation pathway of the riverine suspended sediments, to map erosion-accumulation zones in the lagoon and calculate the sediment budget over a 13-year-long simulation. Sampled suspended sediment concentration data are important for understanding the characteristics of the riverine and lagoon sediments, and show that the suspended organic matter plays a crucial role on the sediment dynamics for this coastal system. The numerical experiments carried out to study sediment dynamics gave satisfactory results and the possibility to get a holistic view of the system. The applied sediment transport model with a new formula for settling velocity was used to estimate the patterns of the suspended sediments and the seasonal and spatial sediment distribution in the whole river–lagoon–sea system. The numerical model also allowed understanding the sensitivity of the system to strong wind events and the presence of ice. The results reveal that during extreme storm events, more than 11.4 × 106 kg of sediments are washed out of the system. Scenarios without ice cover indicate that the lagoon would have much higher suspended sediment concentrations in the winter season comparing with the present situation with ice. The results of an analysis of a long-term (13 years) simulation demonstrate that on average, 62% of the riverine sediments are trapped inside the lagoon, with a marked spatially varying distribution of accumulation zones

    Establishing new bathing sites at the Curonian Lagoon coast: an ecological-social-economic assessment

    No full text
    The large southern Baltic lagoons (Curonian, Vistula and Szczecin Lagoon) face a similar challenge, the need for economic, especially touristic development. This development is hampered by poor water quality, namely eutrophication with regular algae blooms and low water transparency and often insufficient bathing water quality. Therefore, beaches and bathing sites, one precondition for tourist development, are often lacking. Using the Curonian Lagoon as case study, we apply a Systems Approach Framework (SAF) and especially an Ecological-Social-Economic (ESE) assessment to analyse, whether it is reasonable to establish new beaches, against the background of an improved sewage treatment. In this systematic, stepwise and participatory Integrated Coastal Zone Management approach, we guide and support municipalities from the issue identification towards the final implementation by developing alternative scenarios, using model simulations and carrying out tourist surveys as well as supporting socio-economic studies. The present state of bathing water quality does allow opening a new bathing site with a beach at the lagoon and one town decided to do so. The socio-economic analyses did show that lagoon water quality and the possibility to go for a swim is not sufficiently important for tourists on the Curonian Spit, that opening a beach would make sense from an economic point of view. However, high lagoon water temperatures may help to extend the summer bathing season and a beach is regarded as additional attraction for tourists. A systematic involvement of stakeholders was imperative in this case study and we provide lessons learnt for a successful participatory process

    Seasonal renewal time variability in the Curonian Lagoon caused by atmospheric and hydrographical forcing

    No full text
    The aim of this study was to investigate the variability of the water exchanges in the Curonian Lagoon based on the hydraulic regime and the atmospheric forcings. A finite element hydrodynamic model has been applied to the Curonian Lagoon to simulate the circulation patterns for 10 years.With the help of a transport–diffusion model, the salinity distribution and the renewal times of the Curonian Lagoon have been investigated when forced by river runoff, wind, and Baltic Sea level fluctuations. The hydrodynamic model has been validated using in situ salinity measurements. Model results show that the variability depends mainly on seasonal changes in hydrographic forcing and on the dominant wind regimes that prevail over the Curonian Lagoon. Exchanges between the southern and the northern part of the lagoon mostly depend on the wind forcing and are much less influenced by the river discharge. However, when looking at the water renewal time, the most important factor is the river discharge into the lagoon. Other physical forcings only marginally determine the renewal time, and not even ice cover is able to influence it. Even if ice cover strongly inhibits the exchanges between the southern and northern lagoon, it is basically not able to change the absolute value of the renewal times

    Effects of groundwater inputs to the hydraulic circulation, water residence time, and salinity in a Moroccan Atlantic Lagoon

    No full text
    The finite element model SHYFEM was used to study the hydrodynamics and variability of water level, salinity, temperature, and water residence time (WRT) in the Oualidia lagoon located on the Moroccan Atlantic coast. The lagoon hosts a RAMSAR convention-protected area and also offers a set of valuable ecosystem services providing the source of income for the local population. To assess the effects of submarine groundwater discharge (SGD) inputs in the study area, four simulations were set up using different SGD inputs estimates in addition to tidal forcing, bathymetry, meteorological data including solar radiation, rain, and wind, in addition to boundary conditions in the Atlantic such as salinity, water level, and water temperature. The model was calibrated and validated using hydrodynamic measurements of previous studies in 2012 and 2013. The final results from the model are in good agreement with measured data. The simulation with SGD input ~0.05 m3 s−1 produced salinity values closest to the observed ones. Calculated spatial distribution of WRT, temperature, and salinity reduced to coordinates in two PCA axes is consistent with lagoon zones developed earlier using the benthic macroinvertebrate distribution. The calculated spatial distribution of WRT allowed us to evaluate the placement of oyster aquaculture farms and small-scale fisheries in relation to water quality issues existing in the lagoon
    corecore