4 research outputs found

    Metabolic Engineering toward Sustainable Production of Nylon-6

    Get PDF
    Nylon-6 is a bulk polymer used for many applications. It consists of the non-natural building block 6-aminocaproic acid, the linear form of caprolactam. Via a retro-synthetic approach, two synthetic pathways were identified for the fermentative production of 6-aminocaproic acid. Both pathways require yet unreported novel biocatalytic steps. We demonstrated proof of these bioconversions by in vitro enzyme assays with a set of selected candidate proteins expressed in Escherichia coli. One of the biosynthetic pathways starts with 2-oxoglutarate and contains bioconversions of the ketoacid elongation pathway known from methanogenic archaea. This pathway was selected for implementation in E. coli and yielded 6-aminocaproic acid at levels up to 160 mg/L in lab-scale batch fermentations. The total amount of 6-aminocaproic acid and related intermediates generated by this pathway exceeded 2 g/L in lab-scale fed-batch fermentations, indicating its potential for further optimization toward large-scale sustainable production of nylon-6

    Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating Mycobacterium tuberculosis

    No full text
    The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis highlights the need to discover new antitubercular agents. Here we describe the synthesis and characterization of a new series of thienopyrimidine (TP) compounds that kill both replicating and non-replicating M. tuberculosis. The strategy to determine the mechanism of action of these TP derivatives was to generate resistant mutants to the most effective compound TP053 and to isolate the genetic mutation responsible for this phenotype. The only non-synonymous mutation found was a g83c transition in the Rv2466c gene, resulting in the replacement of tryptophan 28 by a serine. The Rv2466c overexpression increased the sensitivity of M. tuberculosis wild-type and resistant mutant strains to TP053, indicating that TP053 is a prodrug activated by Rv2466c. Biochemical studies performed with purified Rv2466c demonstrated that only the reduced form of Rv2466c can activate TP053. The 1.7 angstrom resolution crystal structure of the reduced form of Rv2466c, a protein whose expression is transcriptionally regulated during the oxidative stress response, revealed a unique homodimer in which a beta-strand is swapped between the thioredoxin domains of each subunit. A pronounced groove harboring the unusual active-site motif CPWC might account for the uncommon reactivity profile of the protein. The mutation of Trp28Ser clearly predicts structural defects in the thioredoxin fold, including the destabilization of the dimerization core and the CPWC motif, likely impairing the activity of Rv2466c against TP053. Altogether our experimental data provide insights into the molecular mechanism underlying the anti-mycobacterial activity of TP-based compounds, paving the way for future drug development programmes
    corecore