5,297 research outputs found

    Scaling Laws in High-Energy Inverse Compton Scattering. II. Effect of Bulk Motions

    Get PDF
    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have non-zero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P_{1,K}(s) as P_{1}(s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the X-ray and gamma-ray emission models from various astrophysical objects with non-zero bulk motions such as radio galaxies and astrophysical jets.Comment: 10 pages, 3 figures, accepted version by Physical Review

    Space-time defects and teleparallelism

    Get PDF
    We consider the class of space-time defects investigated by Puntigam and Soleng. These defects describe space-time dislocations and disclinations (cosmic strings), and are in close correspondence to the actual defects that arise in crystals and metals. It is known that in such materials dislocations and disclinations require a small and large amount of energy, respectively, to be created. The present analysis is carried out in the context of the teleparallel equivalent of general relativity (TEGR). We evaluate the gravitational energy of these space-time defects in the framework of the TEGR and find that there is an analogy between defects in space-time and in continuum material systems: the total gravitational energy of space-time dislocations and disclinations (considered as idealized defects) is zero and infinit, respectively.Comment: 22 pages, no figures, to appear in the Class. Quantum Gravit

    Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits

    Full text link
    The Mathisson-Papapetrou equations in the Schwarzschild background both at Mathisson-Pirani and Tulczyjew-Dixon supplementary condition are considered. The region of existence of highly relativistic circular orbits of a spinning particle in this background and dependence of the particle's orbital velocity on its spin and radial coordinate are investigated. It is shown that in contrast to the highly relativistic circular orbits of a spinless particle, which exist only for r=1.5rg(1+δ)r=1.5 r_g(1+\delta), 0<δ≪10<\delta \ll 1, the corresponding orbits of a spinning particle are allowed in a wider space region, and the dimension of this region significantly depends on the supplementary condition. At the Mathisson-Pirani condition new numerical results which describe some typical cases of non-circular highly relativistic orbits of a spinning particle starting from r>1.5rgr>1.5 r_g are presented.Comment: 10 pages, 11 figure

    Relativistic contraction and related effects in noninertial frames

    Get PDF
    Although there is no relative motion among different points on a rotating disc, each point belongs to a different noninertial frame. This fact, not recognized in previous approaches to the Ehrenfest paradox and related problems, is exploited to give a correct treatment of a rotating ring and a rotating disc. Tensile stresses are recovered, but, contrary to the prediction of the standard approach, it is found that an observer on the rim of the disc will see equal lengths of other differently moving objects as an inertial observer whose instantaneous position and velocity are equal to that of the observer on the rim. The rate of clocks at various positions, as seen by various observers, is also discussed. Some results are generalized for observers arbitrarily moving in a flat or a curved spacetime. The generally accepted formula for the space line element in a non-time-orthogonal frame is found inappropriate in some cases. Use of Fermi coordinates leads to the result that for any observer the velocity of light is isotropic and is equal to cc, providing that it is measured by propagating a light beam in a small neighborhood of the observer.Comment: 15 pages, significantly revised version, title changed, to appear in Phys. Rev.

    Cancer mortality in the United Kingdom: projections to the year 2025

    Get PDF
    The purpose of this study was to project mortality rates in the United Kingdom for the period 2006–2025 for 21 major cancers on the basis of the observed trends in mortality rates during 1971–2005, and to estimate the implication in terms of expected deaths. Age-period-cohort models were applied to official statistics. The projected decrease in age-standardised mortality rates for all cancers from 2003 to 2023 was 17% in men and 16% in women. Future mortality rates were projected to decline for most cancer sites. In men, there were small projected increases in mortality rates from cancers of the oral cavity, oesophagus and melanoma, with a larger projected increase (14% over 20 years) in mortality of liver cancer. In women, the only projected increase (18%) was for corpus uteri. The numbers of deaths will increase for most cancers, with a 30% increase in all cancers projected for men and a 12% increase projected for women. Mortality rates from cancer as a whole have been falling in the United Kingdom since 1990, and this decline was projected to continue into the future as well as the declining rates in both sexes for most cancers. Actual numbers of deaths will increase for most cancers

    The Lyman-alpha glow of gas falling into the dark matter halo of a z=3 galaxy

    Full text link
    Quasars are the visible signatures of super-massive black holes in the centres of distant galaxies. It has been suggested that quasars are formed during ``major merger events'' when two massive galaxies collide and merge, leading to the prediction that quasars should be found in the centres of the regions of largest overdensity in the early Universe. In dark matter (DM)-dominated models of the early Universe, massive DM halos are predicted to attract the surrounding gas, which falls towards its centre. The neutral gas is not detectable in emission by itself, but gas falling into the ionizing cone of such a quasar will glow in the Lyman-alpha line of hydrogen, effectively imaging the DM halo. Here we present a Lyman-alpha image of a DM halo at redshift 3, along with a two-dimensional spectrum of the gaseous halo. Our observations are best understood in the context of the standard model for DM halos; we infer a mass of (2-7) x 10^12 solar masses (Msun) for the halo.Comment: 4 pages, 4 figures. Published as a Letter to Nature in the August 26, 2004 issue; see accompanying News and Views article by Z. Haiman in the same issu

    Teleparallel Killing Vectors of Spherically Symmetric Spacetimes

    Full text link
    In this paper, Killing vectors of spherically spacetimes have been evaluated in the context of teleparallel theory of gravitation. Further, we investigate the Killing vectors of the Friedmann metrics. It is found that for static spherically spacetimes the number of Killing vectors turn out to be \emph{seven} while for the Friedmann models, we obtain \emph{six} teleparallel Killing vectors. The results are then compared with those of General Relativity. We conclude that both of these descriptions of gravity do not provide the consistent results in general. However, these results may coincide under certain conditions for a particular spacetime.Comment: 14 pages, accepted for publication in Communications in Theoretical Physic

    Anaerobic mono-digestion of lucerne, grass and forbs - Influence of species and cutting frequency

    Get PDF
    In the present study, biogas potentials of multispecies swards including grass, lucerne, caraway, ribwort plantain and chicory from two- and four-cut regimes (Mix-2 and Mix-4) for mono-digestion applying batch and continuous modes under lab-scale conditions were investigated. The gas yields in terms of volatile solids (VS)loaded from Mix-2 and Mix-4 were compared with pure stand lucerne from the four cuts regime (Lu-4). The batch test results indicate that methane yield on a VS basis was highest from Mix-4 (295 L kg−1), followed by Mix-2 (281 L kg−1) and Lu-4 (255 L kg−1). The results were confirmed with continuous experiments, during which the reactor digesting Mix-4 was stable throughout the experiment with low ammonia and volatile fatty acid (VFA)concentration. Meanwhile, mono-digestion of Lu-4 led to elevated VFA levels, even at a comparatively low organic loading rate of 1.76 g L−1 d−1 but it was not possible to ascertain whether this was due to organic overload alone or if high ammonia levels during Lu-4 digestion were contributing to the reduced performance. It was found that four cuts per year was suitable for a lab-scale mono-digestion system as the substrate was less fibrous and has lower dry matter content, which minimize blockage during feeding and digestate unloading. Micronutrient concentrations, including cobalt, nickel and molybdenum decreased over time during the continuous experiments and were critically lower than the optimum concentration required by methanogens, particularly in Mix-4, but the gas yields of the reactor treating this substrate showed no decrease over time
    • …
    corecore