5,297 research outputs found
Scaling Laws in High-Energy Inverse Compton Scattering. II. Effect of Bulk Motions
We study the inverse Compton scattering of the CMB photons off high-energy
nonthermal electrons. We extend the formalism obtained by the previous paper to
the case where the electrons have non-zero bulk motions with respect to the CMB
frame. Assuming the power-law electron distribution, we find the same scaling
law for the probability distribution function P_{1,K}(s) as P_{1}(s) which
corresponds to the zero bulk motions, where the peak height and peak position
depend only on the power-index parameter. We solved the rate equation
analytically. It is found that the spectral intensity function also has the
same scaling law. The effect of the bulk motions to the spectral intensity
function is found to be small. The present study will be applicable to the
analysis of the X-ray and gamma-ray emission models from various astrophysical
objects with non-zero bulk motions such as radio galaxies and astrophysical
jets.Comment: 10 pages, 3 figures, accepted version by Physical Review
Space-time defects and teleparallelism
We consider the class of space-time defects investigated by Puntigam and
Soleng. These defects describe space-time dislocations and disclinations
(cosmic strings), and are in close correspondence to the actual defects that
arise in crystals and metals. It is known that in such materials dislocations
and disclinations require a small and large amount of energy, respectively, to
be created. The present analysis is carried out in the context of the
teleparallel equivalent of general relativity (TEGR). We evaluate the
gravitational energy of these space-time defects in the framework of the TEGR
and find that there is an analogy between defects in space-time and in
continuum material systems: the total gravitational energy of space-time
dislocations and disclinations (considered as idealized defects) is zero and
infinit, respectively.Comment: 22 pages, no figures, to appear in the Class. Quantum Gravit
Highly relativistic spinning particle in the Schwarzschild field: Circular and other orbits
The Mathisson-Papapetrou equations in the Schwarzschild background both at
Mathisson-Pirani and Tulczyjew-Dixon supplementary condition are considered.
The region of existence of highly relativistic circular orbits of a spinning
particle in this background and dependence of the particle's orbital velocity
on its spin and radial coordinate are investigated. It is shown that in
contrast to the highly relativistic circular orbits of a spinless particle,
which exist only for , , the corresponding
orbits of a spinning particle are allowed in a wider space region, and the
dimension of this region significantly depends on the supplementary condition.
At the Mathisson-Pirani condition new numerical results which describe some
typical cases of non-circular highly relativistic orbits of a spinning particle
starting from are presented.Comment: 10 pages, 11 figure
Relativistic contraction and related effects in noninertial frames
Although there is no relative motion among different points on a rotating
disc, each point belongs to a different noninertial frame. This fact, not
recognized in previous approaches to the Ehrenfest paradox and related
problems, is exploited to give a correct treatment of a rotating ring and a
rotating disc. Tensile stresses are recovered, but, contrary to the prediction
of the standard approach, it is found that an observer on the rim of the disc
will see equal lengths of other differently moving objects as an inertial
observer whose instantaneous position and velocity are equal to that of the
observer on the rim. The rate of clocks at various positions, as seen by
various observers, is also discussed. Some results are generalized for
observers arbitrarily moving in a flat or a curved spacetime. The generally
accepted formula for the space line element in a non-time-orthogonal frame is
found inappropriate in some cases. Use of Fermi coordinates leads to the result
that for any observer the velocity of light is isotropic and is equal to ,
providing that it is measured by propagating a light beam in a small
neighborhood of the observer.Comment: 15 pages, significantly revised version, title changed, to appear in
Phys. Rev.
Cancer mortality in the United Kingdom: projections to the year 2025
The purpose of this study was to project mortality rates in the United Kingdom for the period 2006â2025 for 21 major cancers on the basis of the observed trends in mortality rates during 1971â2005, and to estimate the implication in terms of expected deaths. Age-period-cohort models were applied to official statistics. The projected decrease in age-standardised mortality rates for all cancers from 2003 to 2023 was 17% in men and 16% in women. Future mortality rates were projected to decline for most cancer sites. In men, there were small projected increases in mortality rates from cancers of the oral cavity, oesophagus and melanoma, with a larger projected increase (14% over 20 years) in mortality of liver cancer. In women, the only projected increase (18%) was for corpus uteri. The numbers of deaths will increase for most cancers, with a 30% increase in all cancers projected for men and a 12% increase projected for women. Mortality rates from cancer as a whole have been falling in the United Kingdom since 1990, and this decline was projected to continue into the future as well as the declining rates in both sexes for most cancers. Actual numbers of deaths will increase for most cancers
The Lyman-alpha glow of gas falling into the dark matter halo of a z=3 galaxy
Quasars are the visible signatures of super-massive black holes in the
centres of distant galaxies. It has been suggested that quasars are formed
during ``major merger events'' when two massive galaxies collide and merge,
leading to the prediction that quasars should be found in the centres of the
regions of largest overdensity in the early Universe. In dark matter
(DM)-dominated models of the early Universe, massive DM halos are predicted to
attract the surrounding gas, which falls towards its centre. The neutral gas is
not detectable in emission by itself, but gas falling into the ionizing cone of
such a quasar will glow in the Lyman-alpha line of hydrogen, effectively
imaging the DM halo. Here we present a Lyman-alpha image of a DM halo at
redshift 3, along with a two-dimensional spectrum of the gaseous halo. Our
observations are best understood in the context of the standard model for DM
halos; we infer a mass of (2-7) x 10^12 solar masses (Msun) for the halo.Comment: 4 pages, 4 figures. Published as a Letter to Nature in the August 26,
2004 issue; see accompanying News and Views article by Z. Haiman in the same
issu
Teleparallel Killing Vectors of Spherically Symmetric Spacetimes
In this paper, Killing vectors of spherically spacetimes have been evaluated
in the context of teleparallel theory of gravitation. Further, we investigate
the Killing vectors of the Friedmann metrics. It is found that for static
spherically spacetimes the number of Killing vectors turn out to be
\emph{seven} while for the Friedmann models, we obtain \emph{six} teleparallel
Killing vectors. The results are then compared with those of General
Relativity. We conclude that both of these descriptions of gravity do not
provide the consistent results in general. However, these results may coincide
under certain conditions for a particular spacetime.Comment: 14 pages, accepted for publication in Communications in Theoretical
Physic
Anaerobic mono-digestion of lucerne, grass and forbs - Influence of species and cutting frequency
In the present study, biogas potentials of multispecies swards including grass, lucerne, caraway, ribwort plantain and chicory from two- and four-cut regimes (Mix-2 and Mix-4) for mono-digestion applying batch and continuous modes under lab-scale conditions were investigated. The gas yields in terms of volatile solids (VS)loaded from Mix-2 and Mix-4 were compared with pure stand lucerne from the four cuts regime (Lu-4). The batch test results indicate that methane yield on a VS basis was highest from Mix-4 (295 L kgâ1), followed by Mix-2 (281 L kgâ1) and Lu-4 (255 L kgâ1). The results were confirmed with continuous experiments, during which the reactor digesting Mix-4 was stable throughout the experiment with low ammonia and volatile fatty acid (VFA)concentration. Meanwhile, mono-digestion of Lu-4 led to elevated VFA levels, even at a comparatively low organic loading rate of 1.76 g Lâ1 dâ1 but it was not possible to ascertain whether this was due to organic overload alone or if high ammonia levels during Lu-4 digestion were contributing to the reduced performance. It was found that four cuts per year was suitable for a lab-scale mono-digestion system as the substrate was less fibrous and has lower dry matter content, which minimize blockage during feeding and digestate unloading. Micronutrient concentrations, including cobalt, nickel and molybdenum decreased over time during the continuous experiments and were critically lower than the optimum concentration required by methanogens, particularly in Mix-4, but the gas yields of the reactor treating this substrate showed no decrease over time
- âŚ