4 research outputs found
NeuroAIreh@b: an artificial intelligence-based methodology for personalized and adaptive neurorehabilitation
Cognitive impairments are a prevalent consequence of acquired brain injury, dementia, and age-related cognitive decline, hampering individuals' daily functioning and independence, with significant societal and economic implications. While neurorehabilitation represents a promising avenue for addressing these deficits, traditional rehabilitation approaches face notable limitations. First, they lack adaptability, offering one-size-fits-all solutions that may not effectively meet each patient's unique needs. Furthermore, the resource-intensive nature of these interventions, often confined to clinical settings, poses barriers to widespread, cost-effective, and sustained implementation, resulting in suboptimal outcomes in terms of intervention adaptability, intensity, and duration. In response to these challenges, this paper introduces NeuroAIreh@b, an innovative cognitive profiling and training methodology that uses an AI-driven framework to optimize neurorehabilitation prescription. NeuroAIreh@b effectively bridges the gap between neuropsychological assessment and computational modeling, thereby affording highly personalized and adaptive neurorehabilitation sessions. This approach also leverages virtual reality-based simulations of daily living activities to enhance ecological validity and efficacy. The feasibility of NeuroAIreh@b has already been demonstrated through a clinical study with stroke patients employing a tablet-based intervention. The NeuroAIreh@b methodology holds the potential for efficacy studies in large randomized controlled trials in the future
Table_1_NeuroAIreh@b: an artificial intelligence-based methodology for personalized and adaptive neurorehabilitation.pdf
Cognitive impairments are a prevalent consequence of acquired brain injury, dementia, and age-related cognitive decline, hampering individuals' daily functioning and independence, with significant societal and economic implications. While neurorehabilitation represents a promising avenue for addressing these deficits, traditional rehabilitation approaches face notable limitations. First, they lack adaptability, offering one-size-fits-all solutions that may not effectively meet each patient's unique needs. Furthermore, the resource-intensive nature of these interventions, often confined to clinical settings, poses barriers to widespread, cost-effective, and sustained implementation, resulting in suboptimal outcomes in terms of intervention adaptability, intensity, and duration. In response to these challenges, this paper introduces NeuroAIreh@b, an innovative cognitive profiling and training methodology that uses an AI-driven framework to optimize neurorehabilitation prescription. NeuroAIreh@b effectively bridges the gap between neuropsychological assessment and computational modeling, thereby affording highly personalized and adaptive neurorehabilitation sessions. This approach also leverages virtual reality-based simulations of daily living activities to enhance ecological validity and efficacy. The feasibility of NeuroAIreh@b has already been demonstrated through a clinical study with stroke patients employing a tablet-based intervention. The NeuroAIreh@b methodology holds the potential for efficacy studies in large randomized controlled trials in the future.</p
Anchuelo. Propuestas bioclimĂĄticas en el espacio pĂșblico
Anchuelo. Propuestas bioclimĂĄticas en el espacio pĂșblico. PublicaciĂłn digital de los trabajos elaborados por los estudiantes del curso 2021/22 de la asignatura La Ciudad y el Medio de la Escuela TĂ©cnica Superior de Arquitectura de Madrid de la Universidad PolitĂ©cnica de Madrid. Muestra una serie de propuestas elaboradas en la asignatura para mejorar bioclimĂĄticamente diferentes espacios pĂșblicos municipales en el marco del acuerdo realizado entre el Departamento de UrbanĂstica y OrdenaciĂłn del Territorio y el Excmo. Ayuntamiento de Anchuelo (Madrid)
A randomized trial of planned cesarean or vaginal delivery for twin pregnancy
Background: Twin birth is associated with a higher risk of adverse perinatal outcomes than singleton birth. It is unclear whether planned cesarean section results in a lower risk of adverse outcomes than planned vaginal delivery in twin pregnancy.\ud
\ud
Methods: We randomly assigned women between 32 weeks 0 days and 38 weeks 6 days of gestation with twin pregnancy and with the first twin in the cephalic presentation to planned cesarean section or planned vaginal delivery with cesarean only if indicated. Elective delivery was planned between 37 weeks 5 days and 38 weeks 6 days of gestation. The primary outcome was a composite of fetal or neonatal death or serious neonatal morbidity, with the fetus or infant as the unit of analysis for the statistical comparison.\ud
\ud
Results: A total of 1398 women (2795 fetuses) were randomly assigned to planned cesarean delivery and 1406 women (2812 fetuses) to planned vaginal delivery. The rate of cesarean delivery was 90.7% in the planned-cesarean-delivery group and 43.8% in the planned-vaginal-delivery group. Women in the planned-cesarean-delivery group delivered earlier than did those in the planned-vaginal-delivery group (mean number of days from randomization to delivery, 12.4 vs. 13.3; P = 0.04). There was no significant difference in the composite primary outcome between the planned-cesarean-delivery group and the planned-vaginal-delivery group (2.2% and 1.9%, respectively; odds ratio with planned cesarean delivery, 1.16; 95% confidence interval, 0.77 to 1.74; P = 0.49).\ud
\ud
Conclusion: In twin pregnancy between 32 weeks 0 days and 38 weeks 6 days of gestation, with the first twin in the cephalic presentation, planned cesarean delivery did not significantly decrease or increase the risk of fetal or neonatal death or serious neonatal morbidity, as compared with planned vaginal delivery