12 research outputs found

    Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies.</p> <p>Results</p> <p>We used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80.</p> <p>Conclusions</p> <p>Cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes.</p

    SIRT1 Gain of Function Does Not Mimic or Enhance the Adaptations to Intermittent Fasting

    No full text
    Caloric restriction (CR) has been shown to prevent the onset of insulin resistance and to delay age-related physiological decline in mammalian organisms. SIRT1, a NAD+-dependent deacetylase enzyme, has been suggested to mediate the adaptive responses to CR, leading to the speculation that SIRT1 activation could be therapeutically used as a CR-mimetic strategy. Here, we used a mouse model of moderate SIRT1 overexpression to test whether SIRT1 gain of function could mimic or boost the metabolic benefits induced by every-other-day feeding (EODF). Our results indicate that SIRT1 transgenesis does not affect the ability of EODF to decrease adiposity and improve insulin sensitivity. Transcriptomic analyses revealed that SIRT1 transgenesis and EODF promote very distinct adaptations in individual tissues, some of which can be even be metabolically opposite, as in brown adipose tissue. Therefore, whereas SIRT1 overexpression and CR both improve glucose metabolism and insulin sensitivity, the etiologies of these benefits are largely different

    Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue

    No full text
    Background: a high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies. Results: we used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80. Conclusions: cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes

    AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR

    No full text
    International audienceAMPK is a central regulator of energy homeostasis. AMPK not only elicits acute metabolic responses but also promotes metabolic reprogramming and adaptations in the long-term through regulation of specific transcription factors and coactivators. We performed a whole-genome transcriptome profiling in wild-type (WT) and AMPK-deficient mouse embryonic fibroblasts (MEFs) and primary hepatocytes that had been treated with 2 distinct classes of small-molecule AMPK activators. We identified unique compound-dependent gene expression signatures and several AMPK-regulated genes, including folliculin (Flcn), which encodes the tumor suppressor FLCN. Bioinformatics analysis highlighted the lysosomal pathway and the associated transcription factor EB (TFEB) as a key transcriptional mediator responsible for AMPK responses. AMPK-induced Flcn expression was abolished in MEFs lacking TFEB and transcription factor E3, 2 transcription factors with partially redundant function; additionally, the promoter activity of Flcn was profoundly reduced when its putative TFEB-binding site was mutated. The AMPK-TFEB-FLCN axis is conserved across species; swimming exercise in WT zebrafish induced Flcn expression in muscle, which was significantly reduced in AMPK-deficient zebrafish. Mechanistically, we have found that AMPK promotes dephosphorylation and nuclear localization of TFEB independently of mammalian target of rapamycin activity. Collectively, we identified the novel AMPK-TFEB-FLCN axis, which may function as a key cascade for cellular and metabolic adaptations.-Collodet, C., Foretz, M., Deak, M., Bultot, L., Metairon, S., Viollet, B., Lefebvre, G., Raymond, F., Parisi, A., Civiletto, G., Gut, P., Descombes, P., Sakamoto, K. AMPK promotes induction of the tumor suppressor FLCN through activation of TFEB independently of mTOR

    Protective effects of maternal nutritional supplementation with lactoferrin on growth and brain metabolism

    Get PDF
    Intrauterine growth restriction (IUGR) is a major risk factor for both perinatal and long-term morbidity. Bovine lactoferrin (bLf) is a major milk glycoprotein considered as a pleiotropic functional nutrient. The impact of maternal supplementation with bLf on IUGR-induced sequelae, including inadequate growth and altered cerebral development, remains unknown

    Contribution of genetic ancestry and polygenic risk score in meeting vitamin B12 needs in healthy Brazilian children and adolescents

    No full text
    Abstract Polymorphisms in genes related to the metabolism of vitamin B12 haven’t been examined in a Brazilian population. To (a) determine the correlation between the local genetic ancestry components and vitamin B12 levels using ninety B12-related genes; (b) determine associations between these genes and their SNPs with vitamin B12 levels; (c) determine a polygenic risk score (PRS) using significant variants. This cross-sectional study included 168 children and adolescents, aged 9–13 years old. Total cobalamin was measured in plasma. Genotyping arrays and whole exome data were combined to yield ~ 7000 SNPs in 90 genes related to vitamin B12. The Efficient Local Ancestry Inference was used to estimate local ancestry for African (AFR), Native American, and European (EUR). The association between the genotypes and vitamin B12 levels were determined with generalized estimating equation. Vitamin B12 levels were driven by positive (EUR) and negative (AFR, AMR) correlations with genetic ancestry. A set of 36 variants were used to create a PRS that explained 42% of vitamin level variation. Vitamin B12 levels are influenced by genetic ancestry and a PRS explained almost 50% of the variation in plasma cobalamin in Brazilian children and adolescents

    Persistent low body weight in humans is associated with higher mitochondrial activity in white adipose tissue

    No full text
    Epub ahead of printBACKGROUND:Constitutional thinness (CT) is a state of low but stable body weight (BMI ≀18 kg/m2). CT subjects have normal-range hormonal profiles and food intake but exhibit resistance to weight gain despite living in the modern world's obesogenic environment.OBJECTIVE:The goal of this study is to identify molecular mechanisms underlying this protective phenotype against weight gain.METHODS:We conducted a clinical overfeeding study on 30 CT subjects and 30 controls (BMI 20-25 kg/m2) matched for age and sex. We performed clinical and integrative molecular and transcriptomic analyses on white adipose and muscle tissues.RESULTS:Our results demonstrate that adipocytes were markedly smaller in CT individuals (mean ± SEM: 2174 ± 142 ÎŒm 2) compared with controls (3586 ± 216 ÎŒm2) (P 0.75)], with many differentially expressed genes associating with positive metabolic outcomes. Pathway analyses revealed an increase in fatty acid oxidation ( P = 3 × 10-04) but also triglyceride biosynthesis (P = 3.6 × 10-04). No differential response to the overfeeding was observed in the 2 groups.CONCLUSIONS:The distinct molecular signature of the adipose tissue in CT individuals suggests the presence of augm ented futile lipid cycling, rather than mitochondrial uncoupling, as a way to increase energy expenditure in CT individuals. We propose that increased mitochondrial function in adipose tissue is an important mediator in sustaining the low body weight in CT individuals. This knowledge could ultimately allow more targeted approaches for weight management treatment strategies. This trial was registered at clinicaltrials.gov as NCT02004821
    corecore