114 research outputs found

    Single-Mode versus multimode interferometry: a performance study

    Full text link
    We compare performances of ground-based single-mode and multimode (speckle) interferometers in the presence of partial Adaptive Optics correction of atmospheric turbulence. It is first shown that for compact sources (i.e. sources smaller than the Airy disk of a single telescope) not entirely resolved by the interferometer, the remarkable property of spatial filtering of single-mode waveguides coupled with AO correction significantly reduces the speckle noise which arises from residual wavefront corrugations. Focusing on those sources, and in the light of the AMBER experiment (the near infrared instrument of the VLTI), we show that single-mode interferometry produces a better Signal-to-Noise Ratio on the visibility than speckle interferometry. This is true for bright sources (K < 5), and in any case as soon as Strehl ratio of 0.2 is achieved. Finally, the fiber estimator is much more robust -- by two orders of magnitude -- than the speckle estimator with respect to Strehl ratio variations during the calibration procedure. The present analysis theoretically explains why interferometry with fibers can produce visibility measurements with a very high precision, 1% or lessComment: 13 pages (5 pages of appendices), 6 figures to be published in A&

    Evidence for thermal fatigue on Mars from rockfall patterns on impact crater slopes

    Get PDF
    Individual block falls are one of the currently active surface processes on Mars. Similarly to Earth, clasts detach from upslope outcrops roll or bounce downslope, leaving a track on the substratum (Fig. 1). The trails show that the rockfalls are recent, as aeolian processes would infill topographic lows over time. Using rover-track erasure rates, these tracks are likely <100 ka. On Earth, slope instability is usually caused by phase changes of H2O [1]. However, solar-induced thermal stress could also play a key-role in rock breakdown leading to rockfalls [2]. Although liquid water is not stable at the surface of Mars today, sub-surface water ice is known to be present from mid- to high-latitudes [3]. Water ice and CO2 seasonal frost on shadowed pole-facing slopes may exist at latitudes down to 30° [4] or less [5]. On the other hand, insolation-related thermal stress has been used to explain fracture orientation patterns in martian boulders observed by the Mars Exploration Rovers [6] and other studies suggest that it could cause rock breakdown on airless bodies [7]. Therefore, both phase transitions and solar-induced thermal stress are plausible mechanisms for rock breakdown and preconditioning slopes for rockfalls on modern Mars. In this study we analyze distribution of rockfalls on impact crater walls to assess whether one of these mechanisms could be involved in local rock breakdown

    Evidence for thermal-stress-induced rockfalls on Mars impact crater slopes

    Get PDF
    Here we study rocks falling from exposed outcrops of bedrock, which have left tracks on the slope over which they have bounced and/or rolled, in fresh impact craters (1–10 km in diameter) on Mars. The presence of these tracks shows that these rocks have fallen relatively recently because aeolian processes are known to infill topographic lows over time. Mapping of rockfall tracks indicate trends in frequency with orientation, which in turn depend on the latitudinal position of the crater. Craters in the equatorial belt (between 15°N and 15°S) exhibit higher frequencies of rockfall on their N-S oriented slopes compared to their E-W ones. Craters >15° N/S have notably higher frequencies on their equator-facing slopes as opposed to the other orientations. We computed solar radiation on the surface of crater slopes to compare insolation patterns and rockfall spatial distribution, and find statistically significant correlations between maximum diurnal insolation and rockfall frequency. Our results indicate that solar-induced thermal stress plays a more important role under relatively recent climate conditions in rock breakdown and preconditioning slopes for rockfalls than phase transitions of H2O or CO2, at mid and equatorial latitudes. Thermal stress should thus be considered as an important factor in promoting mass-wasting process on impact crater walls and other steep slopes on Mars

    UV wavelengths experienced during development affect larval newt visual sensitivity and predation efficiency

    Get PDF
    We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV-) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV- light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV- developmental group. Larvae in the UV- testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment

    Direct constraint on the distance of y2 Velorum from AMBER/VLTI observations

    Get PDF
    In this work, we present the first AMBER observations, of the Wolf-Rayet and O (WR+O) star binary system y2 Velorum. The AMBER instrument was used with the telescopes UT2, UT3, and UT4 on baselines ranging from 46m to 85m. It delivered spectrally dispersed visibilities, as well as differential and closure phases, with a resolution R = 1500 in the spectral band 1.95-2.17 micron. We interpret these data in the context of a binary system with unresolved components, neglecting in a first approximation the wind-wind collision zone flux contribution. We show that the AMBER observables result primarily from the contribution of the individual components of the WR+O binary system. We discuss several interpretations of the residuals, and speculate on the detection of an additional continuum component, originating from the free-free emission associated with the wind-wind collision zone (WWCZ), and contributing at most to the observed K-band flux at the 5% level. The expected absolute separation and position angle at the time of observations were 5.1&plusmn;0.9mas and 66&plusmn;15&deg; respectively. However, we infer a separation of 3.62+0.11-0.30 mas and a position angle of 73+9-11&deg;. Our analysis thus implies that the binary system lies at a distance of 368+38-13 pc, in agreement with recent spectrophotometric estimates, but significantly larger than the Hipparcos value of 258+41-31 pc

    Near-Infrared interferometry of Eta Carinae with high spatial and spectral resolution using the VLTI and the AMBER instrument

    Get PDF
    We present the first NIR spectro-interferometry of the LBV Eta Carinae. The K band observations were performed with the AMBER instrument of the ESO Very Large Telescope Interferometer using three 8.2m Unit Telescopes with baselines from 42 to 89m. The aim of this work is to study the wavelength dependence of Eta Car's optically thick wind region with a high spatial resolution of 5 mas (11 AU) and high spectral resolution. The medium spectral resolution observations (R=1,500) were performed in the wavelength range around both the HeI 2.059 micron and the Br gamma 2.166 micron emission lines, the high spectral resolution observations (R=12,000) only in the Br gamma line region. In the K-band continuum, a diameter of 4.0 +/-0.2 mas (Gaussian FWHM, fit range 28-89m) was measured for Eta Car's optically thick wind region. If we fit Hillier et al. (2001) model visibilities to the observed AMBER visibilities, we obtain 50 % encircled-energy diameters of 4.2, 6.5 and 9.6mas in the 2.17 micron continuum, the HeI, and the Br gamma emission lines, respectively. In the continuum near the Br gamma line, an elongation along a position angle of 120+/-15 degrees was found, consistent with previous VLTI/VINCI measurements by van Boekel et al. (2003). We compare the measured visibilities with predictions of the radiative transfer model of Hillier et al. (2001), finding good agreement. Furthermore, we discuss the detectability of the hypothetical hot binary companion. For the interpretation of the non-zero differential and closure phases measured within the Br gamma line, we present a simple geometric model of an inclined, latitude-dependent wind zone. Our observations support theoretical models of anisotropic winds from fast-rotating, luminous hot stars with enhanced high-velocity mass loss near the polar regions.Comment: 22 pages, 14 figures, 2 tables; A&A in pres

    The Hi-GAL compact source catalogue – I. The physical properties of the clumps in the inner Galaxy (−71. ◦ 0 < ℓ < 67.◦ 0)

    Get PDF
    Hi-GAL (Herschel InfraRed Galactic Plane Survey) is a large-scale survey of the Galactic plane, performed with Herschel in five infrared continuum bands between 70 and 500 µm. We present a band-merged catalogue of spatially matched sources and their properties derived from fits to the spectral energy distributions (SEDs) and heliocentric distances, based on the photometric catalogues presented in Molinari et al., covering the portion of Galactic plane −71.◦ 0 < ℓ < 67.◦ 0. The band-merged catalogue contains 100 922 sources with a regular SED, 24 584 of which show a 70-µm counterpart and are thus considered protostellar, while the remainder are considered starless. Thanks to this huge number of sources, we are able to carry out a preliminary analysis of early stages of star formation, identifying the conditions that characterize different evolutionary phases on a statistically significant basis. We calculate surface densities to investigate the gravitational stability of clumps and their potential to form massive stars. We also explore evolutionary status metrics such as the dust temperature, luminosity and bolometric temperature, finding that these are higher in protostellar sources compared to pre-stellar ones. The surface density of sources follows an increasing trend as they evolve from pre-stellar to protostellar, but then it is found to decrease again in the majority of the most evolved clumps. Finally, we study the physical parameters of sources with respect to Galactic longitude and the association with spiral arms, finding only minor or no differences between the average evolutionary status of sources in the fourth and first Galactic quadrants, or between 'on-arm' and 'interarm' positions

    Constraining the wind launching region in Herbig Ae stars: AMBER/VLTI spectroscopy of HD 104237

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Aims. We investigate the origin of the Brγ emission of the Herbig Ae star HD 104237 on Astronomical Unit (AU) scales. Methods. Using AMBER/VLTI at a spectral resolution R = 1500 we spatially resolve the emission in both the Brγ line and the adjacent continuum. Results. The visibility does not vary between the continuum and the Brγ line, even though the line is strongly detected in the spectrum, with a peak intensity 35% above the continuum. This demonstrates that the line and continuum emission have similar size scales. We assume that the K-band continuum excess originates in a “puffed-up” inner rim of the circumstellar disk, and discuss the likely origin of Brγ. Conclusions. We conclude that this emission most likely arises from a compact disk wind, launched from a region 0.2–0.5 AU from the star, with a spatial extent similar to that of the near infrared continuum emission region, i.e., very close to the inner rim location.This work has been partly supported by the MIUR COFIN grant 2003/027003-001 and 025227/2004 to the INAFOsservatorio Astrofisico di Arcetri. This project has benefited from funding from the French Centre National de la Recherche Scientifique (CNRS) through the Institut National des Sciences de l’Univers (INSU) and its Programmes Nationaux (ASHRA, PNPS). The authors from the French laboratories would like to thank the successive directors of the INSU/CNRS directors. C. Gil work was supported in part by the Fundac¸˜ao para a Ciˆencia e a Tecnologia through project POCTI/CTE-AST/55691/2004 from POCTI,with funds from the European program FEDER
    corecore