154 research outputs found
Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine
Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals. In this cohort, 14 were non-secretor individuals and the remainders were secretors. The secretor status is defined by the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucus and other secretions. It is determined by fucosyltransferase 2 enzyme, encoded by the FUT2 gene. Non-functional enzyme resulting from a nonsense mutation in the FUT2 gene leads to the non-secretor phenotype. PCR-DGGE and qPCR methods were applied for the intestinal microbiota analysis. Principal component analysis of bifidobacterial DGGE profiles showed that the samples of non-secretor individuals formed a separate cluster within the secretor samples. Moreover, bifidobacterial diversity (p<0.0001), richness (p<0.0003), and abundance (p<0.05) were significantly reduced in the samples from the non-secretor individuals as compared with those from the secretor individuals. The non-secretor individuals lacked, or were rarely colonized by, several genotypes related to B. bifidum, B. adolescentis and B. catenulatum/pseudocatenulatum. In contrast to bifidobacteria, several bacterial genotypes were more common and the richness (p<0.04) of dominant bacteria as detected by PCR-DGGE was higher in the non-secretor individuals than in the secretor individuals. We showed that the diversity and composition of the human bifidobacterial population is strongly associated with the histo-blood group ABH secretor/non-secretor status, which consequently appears to be one of the host genetic determinants for the composition of the intestinal microbiota. This association can be explained by the difference between the secretor and non-secretor individuals in their expression of ABH and Lewis glycan epitopes in the mucosa
Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-α and histamine whereas normal keratinocytes undergo cytolysis
<p>Abstract</p> <p>Background</p> <p>Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-α are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-α and histamine on cervical carcinoma cell lines was studied.</p> <p>Methods and results</p> <p>TNF-α alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-α and histamine in combination showed no additional effect over that by TNF-α alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-α-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-α and histamine. In comparison, TNF-α or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR) I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-α immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes.</p> <p>Conclusion</p> <p>SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-α and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-α could even enhance carcinoma cell migration.</p
- …