211 research outputs found
Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from northwestern Uganda following melarsoprol withdrawal
Human African trypanosomiasis (HAT) manifests as a chronic infection caused by <i>Trypanosoma brucei gambiense</i>, or as a more acute form due to <i>T. b. rhodesiense</i>. Both manifestations occur in Uganda and melarsoprol use against the former was jeopardised in the 1990s as reports of reduced efficacy increased to the point where it was dismissed as first-line treatment at some treatment centers. Previous work to elucidate possible mechanisms leading to melarsoprol resistance pointed to a P2 type adenosine transporter known to mediate melarsoprol uptake and previously shown to be mutated in significant numbers of patients not responding to the drug. Our present findings indicate that there is a low prevalence of mutants in foci where melarsoprol relapses are infrequent. In addition we observe that at the Omugo focus where the drug was withdrawn as first line over 6 years ago, the mutant alleles have disappeared, suggesting that drug pressure is responsible for fuelling their spread. Thus constant monitoring for mutants could play a key role in cost-effective HAT management by identifying which foci can still use the less logistically demanding melarsoprol as opposed to the alternative drug eflornithine. What is required now is a simple method for identifying such mutants at the point of care, enabling practitioners to make informed prescriptions at first diagnosis
Neue Parameter fĂĽr die Wirkstofftestung gegen Trypanosoma cruzi
Chagas disease is a zoonosis caused by Trypanosoma cruzi and transmitted by triatomine bugs. Autochthonous to Latin America, Chagas disease has spread globally through travel and migration. New drugs are needed urgently, in particular drugs that cure the chronic stage. This is where high-content imaging makes a key contribution: assays with fluorescent parasites in cell culture allow to determine pharmacodynamic parameters and to better assess the antichagasic potential of new molecules
Fexinidazole for human African trypanosomiasis, the fruit of a successful public-private partnership
After 100 years of chemotherapy with impractical and toxic drugs, an oral cure for human African trypanosomiasis (HAT) is available: Fexinidazole. In this case, we review the history of drug discovery for HAT with special emphasis on the discovery, pre-clinical development, and operational challenges of the clinical trials of fexinidazole. The screening of the Drugs for Neglected Diseases initiative (DNDi) HAT-library by the Swiss TPH had singled out fexinidazole, originally developed by Hoechst (now Sanofi), as the most promising of a series of over 800 nitroimidazoles and related molecules. In cell culture, fexinidazole has an IC50 of around 1 microM against Trypanosoma brucei and is more than 100-fold less toxic to mammalian cells. In the mouse model, fexinidazole cures both the first, haemolymphatic, and the second, meningoencephalitic stage of the infection, the latter at 100 mg/kg twice daily for 5 days. In patients, the clinical trials managed by DNDi and supported by Swiss TPH mainly conducted in the Democratic Republic of the Congo demonstrated that oral fexinidazole is safe and effective for use against first- and early second-stage sleeping sickness. Based on the positive opinion issued by the European Medicines Agency in 2018, the WHO has released new interim guidelines for the treatment of HAT including fexinidazole as the new therapy for first-stage and non-severe second-stage sleeping sickness caused by Trypanosoma brucei gambiense (gHAT). This greatly facilitates the diagnosis and treatment algorithm for gHAT, increasing the attainable coverage and paving the way towards the envisaged goal of zero transmission by 2030
Anti-malarial ozonides OZ439 and OZ609 tested at clinically relevant compound exposure parameters in a novel ring-stage survival assay
BACKGROUND: Drug efficacy against kelch 13 mutant malaria parasites can be determined in vitro with the ring-stage survival assay (RSA). The conventional assay protocol reflects the exposure profile of dihydroartemisinin. METHODS: Taking into account that other anti-malarial peroxides, such as the synthetic ozonides OZ439 (artefenomel) and OZ609, have different pharmacokinetics, the RSA was adjusted to the concentration-time profile of these ozonides in humans and a novel, semi-automated readout was introduced. RESULTS: When tested at clinically relevant parameters, it was shown that OZ439 and OZ609 are active against the Plasmodium falciparum clinical isolate Cam3.I(R539T). CONCLUSION: If the in vitro RSA does indeed predict the potency of compounds against parasites with increased tolerance to artemisinin and its derivatives, then the herein presented data suggest that following drug-pulses of at least 48 h, OZ439 and OZ609 will be highly potent against kelch 13 mutant isolates, such as P. falciparum Cam3.I(R539T)
Nucleic acid amplification techniques for the detection of Schistosoma mansoni infection in humans and the intermediate snail host: a structured review and meta-analysis of diagnostic accuracy
As part of our studies on antiprotozoal activity of approved herbal medicinal products, we previously found that a commercial tincture from Salvia officinalis L. (common Sage, Lamiaceae) possesses high activity against Trypanosoma brucei rhodesiense (Tbr), causative agent of East African Human Trypanosomiasis. We have now investigated in detail the antitrypanosomal constituents of this preparation. A variety of fractions were tested for antitrypanosomal activity and analyzed by UHPLC/+ESI QqTOF MS. The resulting data were used to generate a partial least squares (PLS) regression model that highlighted eight particular constituents that were likely to account for the major part of the bioactivity. These compounds were then purified and identified and their activity against the pathogen tested. All identified compounds (one flavonoid and eight diterpenes) displayed significant activity against Tbr, in some cases higher than that of the total tincture. From the overall results, it can be concluded that the antitrypanosomal activity of S. officinalis L. is, for the major part, caused by abietane-type diterpenes of the rosmanol/rosmaquinone group
2-(Nitroaryl)-5-substituted-1,3,4-thiadiazole derivatives with antiprotozoal activities: in vitro and in vivo study
Nitro-containing compounds are a well-known class of anti-infective agents, especially in the field of anti-parasitic drug discovery. HAT or sleeping sickness is a neglected tropical disease caused by a protozoan parasite, Trypanosoma brucei. Following the approval of fexinidazole as the first oral treatment for both stages of T. b. gambiense HAT, there is an increased interest in developing new nitro-containing compounds against parasitic diseases. In our previous projects, we synthesized several megazole derivatives that presented high activity against Leishmania major promastigotes. Here, we screened and evaluated their trypanocidal activity. Most of the compounds showed submicromolar IC50 against the BSF form of T. b. rhodesiense (STIB 900). To the best of our knowledge, compound 18c is one of the most potent nitro-containing agents reported against HAT in vitro. Compound 18g revealed an acceptable cure rate in the acute mouse model of HAT, accompanied with noteworthy in vitro activity against T. brucei, T. cruzi, and L. donovani. Taken together, these results suggest that these compounds are promising candidates to evaluate their pharmacokinetic and biological profiles in the futu
Boswellic acids show in vitro activity against Leishmania donovani
In continuation of our search for leads from medicinal plants against protozoal pathogens, we detected antileishmanial activity in polar fractions of a dichloromethane extract from Boswellia serrata resin. 11-keto-beta-boswellic acid (KBA) could be isolated from these fractions and was tested in vitro against Leishmania donovani axenic amastigotes along with five further boswellic acid derivatives. 3-O-acetyl-11-keto-beta-boswellic acid (AKBA) showed the strongest activity with an IC50 value of 0.88 microM against axenic amastigotes but was inactive against intracellular amastigotes in murine macrophages
The alkaloid-enriched fraction of; The alkaloid-enriched fraction of Pachysandra terminalis (Buxaceae) shows prominent activity against Trypanosoma brucei rhodesiensePachysandra terminalis; (Buxaceae) shows prominent activity against; Trypanosoma brucei rhodesiense
In the course of our studies on antiprotozoal natural products and following our recent discovery that certain aminosteroids and aminocycloartanoid compounds from Holarrhena africana A. DC. (Apocynaceae) and Buxus sempervirens L. (Buxaceae), respectively, are strong and selective antitrypanosomal agents, we have extended these studies to another plant, related to the latter-namely, Pachysandra terminalis Sieb. and Zucc. (Buxaceae). This species is known to contain aminosteroids similar to those of Holarrhena and structurally related to the aminocycloartanoids of Buxus. The dicholoromethane extract obtained from aerial parts of P. terminalis and, in particular, its alkaloid fraction obtained by acid-base partitioning showed prominent activity against Trypanosoma brucei rhodesiense (Tbr). Activity-guided fractionation along with extended UHPLC-(+)ESI QTOF MS analyses coupled with partial least squares (PLS) regression modelling relating the analytical profiles of various fractions with their bioactivity against Tbr highlighted eighteen constituents likely responsible for the antitrypanosomal activity. Detailed analysis of their (+)ESI mass spectral fragmentation allowed identification of four known constituents of P. terminalis as well as structural characterization of ten further amino-/amidosteroids not previously reported from this plant
8-amino-6-methoxyquinoline-tetrazole hybrids: Impact of linkers on antiplasmodial activity
A new series of compounds was prepared from 6-methoxyquinolin-8-amine or its N-(2-aminoethyl) analogue via Ugi-azide reaction. Their linkers between the quinoline and the tert-butyltetrazole moieties differ in chain length, basicity and substitution. Compounds were tested for their antiplasmodial activity against Plasmodium falciparum NF54 as well as their cytotoxicity against L-6-cells. The activity and the cytotoxicity were strongly influenced by the linker and its substitution. The most active compounds showed good activity and promising selectivity
Enantiospecific antitrypanosomal in vitro activity of eflornithine
The polyamine synthesis inhibitor eflornithine is a recommended treatment for the neglected tropical disease Gambian human African trypanosomiasis in late stage. This parasitic disease, transmitted by the tsetse fly, is lethal unless treated. Eflornithine is administered by repeated intravenous infusions as a racemic mixture of L-eflornithine and D-eflornithine. The study compared the in vitro antitrypanosomal activity of the two enantiomers with the racemic mixture against three Trypanosoma brucei gambiense strains. Antitrypanosomal in vitro activity at varying drug concentrations was analysed by non-linear mixed effects modelling. For all three strains, L-eflornithine was more potent than D-eflornithine. Estimated 50% inhibitory concentrations of the three strains combined were 9.1 muM (95% confidence interval [8.1; 10]), 5.5 muM [4.5; 6.6], and 50 muM [42; 57] for racemic eflornithine, L-eflornithine and D-eflornithine, respectively. The higher in vitro potency of L-eflornithine warrants further studies to assess its potential for improving the treatment of late-stage Gambian human African trypanosomiasis
- …