27 research outputs found
Investigation of the microwave signatures of the Baltic Sea ice
It is essential for winter shipping in the Baltic Sea to get reliable and up-to-date information of its rapidly changing ice conditions. Spaceborne synthetic aperture radar (SAR) images are the only way to produce this information operationally in fine scale independent of daylight and nearly independent of weather conditions. Currently, classification algorithms for the RADARSAT-1 and ENVISAT SAR images utilize mainly the image structure and only limited information on sea ice geophysics and empirical statistics of backscattering signatures of various ice types are utilized. Therefore, interpretation of the classification results is often difficult. Both classification results and their interpretation should very likely improve with the addition of this information. Spaceborne microwave radiometer data are not suitable for the operational Baltic Sea ice monitoring aiding ship navigation due to their coarse spatial resolution, but they can provide an independent data source on the sea ice conditions for validation of the SAR classification algorithms. Both SAR and radiometer data based sea ice products can also be utilized in the geophysical studies of the Baltic Sea ice.
In order to support development of operational classification algorithms for SAR and radiometer data, basic research on the microwave remote sensing of the Baltic Sea ice has been conducted in this work. The research work included the following topics: (1) statistics of C- and X-band backscattering signatures of various ice types, (2) statistics of L- and C-band polarimetric discriminants of various ice types, (3) radar incidence angle dependence of backscattering coefficient (σ°) in RADARSAT-1 SAR images, (4) dependence between standard deviation and measurement length for σ° signatures and its usability in sea ice classification, (5) comparison between SAR σ° time series and results from a thermodynamic snow/ice model, and (6) statistics of passive microwave signatures of various ice types. Additionally, a comprehensive literature review of the previous work on the microwave remote sensing of the Baltic Sea ice is presented.
The main results of this work include the following. It is not possible to discriminate open water and various ice types using the level of σ°, co- or cross-polarization ratio, or standard deviation of σ°. C-band VH-polarized σ° at high incidence angle provides slightly better ice type discrimination accuracy than any other combination of C- and X-band radar parameters. VH-polarization is more suitable for estimating the degree of ice deformation than co-polarizations. Snow wetness has a large effect on the σ° statistics. Notably, when snow cover is wet then the σ° contrasts between various ice types are smaller than in the dry snow case. Incidence angle dependence of the C-band HH-polarized σ° was derived for level ice and deformed ice. It is utilized in the operational SAR classification algorithms developed by Finnish Institute of Marine Research. The method for deriving the σ° incidence angle dependence is applicable for any SAR sensor. There is a large variation of level ice σ° with changing weather conditions. A 1-D high-resolution thermodynamic snow/ice model generally helps to interpret changes in the σ° time series. The modeled snow and ice surface temperature, cases of snow melting, and evolution of snow and ice thickness are related to the changes in σ°. It was found out that the standard deviation of σ° for various ice types depends on the length of measurement. This may be utilized in the SAR image classification. It is not possible to resolve concentrations of thin new ice and all other ice types combined in the Baltic Sea using radiometer data as has been done for the Arctic seasonal ice zones.Talvimerenkulku Itämerellä tarvitsee luotettavaa ja ajantasaista informaatiota Itämeren nopeasti muuttuvista jääoloista. Synteettisen apertuurin tutkan (SAR) kuvat ovat ainoa tapa tuottaa operatiivisesti tarvittavaa jääinformaatiota riippumatta päivänvalon määrästä ja lähes riippumatta sääolosuhteista. RADARSAT-1 ja ENVISAT SAR-tutkakuvien luokittelualgoritmit perustuvat tällä hetkellä lähinnä kuvien rakenteeseen, eikä merijään geofysiikkaa ja empiiristä tilastotietoa eri jäätyyppien sirontavasteista hyödynnetä kuin rajallisesti. SAR-kuvien luokittelutulosten tulkitseminen on siten usein vaikeaa. Sekä itse luokittelutulokset, että niiden tulkinta parantuisivat, jos luokittelualgorimit hyödyntäisivät edellä mainittua tietoa. Satelliittiradiometrien kuvat eivät sovellu Itämeren jään operatiiviseen monitorointiin niiden karkean spatiaalisen resoluution vuoksi. Niillä kuitenkin voitaisiin validoida SAR-kuvien luokittelualgoritmeja, koska ne ovat SAR-kuvista riippumaton datalähde Itämeren jääoloista.
Tässä työssä on suoritettu seuraavaa perustutkimusta Itämeren jään mikroaaltokaukokartoituksessa, minkä tarkoituksena on tukea SAR- ja radiometrikuvien operatiivisten luokittelualgoritmien kehitystyötä: (1) eri jäätyyppien C- ja X-kanavien sirontakertoimien (σ°) statistiikka, (2) eri jäätyyppien L- ja C-kanavien polarimetristen diskriminanttien statistiikka, (3) σ°:n mittauskulmariippuvuus RADARSAT-1 SAR-kuvissa, (4) σ°:n keskihajonnan ja mittausmatkan välinen riippuvuus ja hyödyntäminen jäätyyppiluokittelussa, (5) SAR-kuvien sirontakerroinaikasarjojen vertailu merijään termodynamiikkamalliin, ja (6) eri jäätyyppien kirkkauslämpötilojen statistiikka.
Työssä saavutettiin seuraavia merkittäviä tuloksia. Eri jäätyyppien ja avoveden luokittelu ei ole mahdollista käyttäen sirontakerrointa, yhdensuuntais- ja ristipolarisaatiosuhdetta tai σ° keskihajontaa. C-kanavan VH-polarisaation σ° suurella mittauskulmalla luokittelee eri jäätyypit hieman paremmin kuin mikään muu C- ja X-kanavan tutkaparametrikombinaatio. Merijään deformoitumisasteen estimointiin sopii paremmin VH-polarisaation σ° kuin yhdensuuntaispolarisaation. Lumipeitteen kosteudella on suuri vaikutus sirontakerroinstatistiikkaan; erityisesti, kun lumipeite on märkä on sirontakerroinkontrasti eri jäätyyppien välillä pienempi kun lumipeite on kuiva. C-kanavan HH-polarisaation σ°:n mittauskulmariippuvuus määritettiin tasaiselle ja deformoituneelle jäälle. Mittauskulmariippuvuuden laskentamenetelmää voidaan käyttää mille tahansa SAR-tutkakuvalle. Muuttuvat sääolosuhteet aiheuttavat suuria muutoksia tasaisen jään σ°:ssa. Merijään termodynamiikkamalli yleensä auttaa selittämään muutoksia σ°:n aikasarjassa. σ°:n muutokset ovat yhteydessä termodynamiikkamallilla laskettuihin lumen ja jään parametreihin. σ°:n keskihajonnan havaittiin riippuvan etäisyydestä. Tätä riippuvuutta voitaneen hyödyntään SAR-kuvien luokittelussa. Itämerellä satelliittiradiometridatalla pystytään määrittämään vain merijään kokonaiskonsetraatio, toisin kuin arktisten merien kausiluontoisilla merijääalueilla, missä myös eri jäätyyppien konsentraatioiden määrittäminen on mahdollista.reviewe
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
We present a method to combine CryoSat-2 (CS2) radar altimeter and Sentinel-1 synthetic aperture radar (SAR) data to obtain sea ice thickness (SIT) estimates for the Barents and Kara seas. From the viewpoint of tactical navigation, along-track altimeter SIT estimates are sparse, and the goal of our study is to develop a method to interpolate altimeter SIT measurements between CS2 ground tracks. The SIT estimation method developed here is based on the interpolation of CS2 SIT utilizing SAR segmentation and segmentwise SAR texture features. The SIT results are compared to SIT data derived from the AARI ice charts; to ORAS5, PIOMAS and TOPAZ4 ocean-sea ice data assimilation system reanalyses; to combined CS2 and Soil Moisture and Ocean Salinity (SMOS) radiometer weekly SIT (CS2SMOS SIT) charts; and to the daily MODIS (Moderate Resolution Imaging Spectro-radiometer) SIT chart. We studied two approaches: CS2 directly interpolated to SAR segments and CS2 SIT interpolated to SAR segments with mapping of the CS2 SIT distributions to correspond to SIT distribution of the PIOMAS ice model. Our approaches yield larger spatial coverage and better accuracy compared to SIT estimates based on either CS2 or SAR data alone. The agreement with modelled SIT is better than with the CS2SMOS SIT. The average differences when compared to ice models and the AARI ice chart SIT were typically tens of centimetres, and there was a significant positive bias when compared to the AARI SIT (on average 27 cm) and a similar bias (24 cm) when compared to the CS2SMOS SIT. Our results are directly applicable to the future CRISTAL mission and Copernicus programme SAR missions.Peer reviewe
Validation of SMOS sea ice thickness retrieval in the northern Baltic Sea
The Soil Moisture and Ocean Salinity (SMOS) mission observes brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) with a daily coverage of the polar regions. L-band radiometry has been shown to provide information on the thickness of thin sea ice. Here, we apply a new emission model that has previously been used to investigate the impact of snow on thick Arctic sea ice. The model has not yet been used to retrieve ice thickness. In contrast to previous SMOS ice thickness retrievals, the new model allows us to include a snow layer in the brightness temperature simulations. Using ice thickness estimations from satellite thermal imagery, we simulate brightness temperatures during the ice growth season 2011 in the northern Baltic Sea. In both the simulations and the SMOS observations, brightness temperatures increase by more than 20 K, most likely due to an increase of ice thickness. Only if we include the snow in the model, the absolute values of the simulations and the observations agree well (mean deviations below 3.5 K). In a second comparison, we use high-resolution measurements of total ice thickness (sum of ice and snow thickness) from an electromagnetic (EM) sounding system to simulate brightness temperatures for 12 circular areas. While the SMOS observations and the simulations that use the EM modal ice thickness are highly correlated (r2=0.95), the simulated brightness temperatures are on average 12 K higher than observed by SMOS. This would correspond to an 8-cm overestimation of the modal ice thickness by the SMOS retrieval. In contrast, if the simulations take into account the shape of the EM ice thickness distributions (r2=0.87), the mean deviation between simulated and observed brightness temperatures is below 0.1 K
IMSI report no. 2 : The Baltic Sea ice field campaign 17-24 March 1997 : Data report
Sisältää myös toisen artikkelin:
Ari Seinä, Hannu Grönvall, Mikael Nizovsky & Jouni Vainio: IMSI report no. 3: Dissemination of test products to selected users in the Baltic Sea area : Report on activities in the winter of 199
Satellite Observations for Detecting and Forecasting Sea-Ice Conditions: A Summary of Advances Made in the SPICES Project by the EU’s Horizon 2020 Programme
The detection, monitoring, and forecasting of sea-ice conditions, including their extremes, is very important for ship navigation and offshore activities, and for monitoring of sea-ice processes and trends. We summarize here recent advances in the monitoring of sea-ice conditions and their extremes from satellite data as well as the development of sea-ice seasonal forecasting capabilities. Our results are the outcome of the three-year (2015–2018) SPICES (Space-borne Observations for Detecting and Forecasting Sea-Ice Cover Extremes) project funded by the EU’s Horizon 2020 programme. New SPICES sea-ice products include pancake ice thickness and degree of ice ridging based on synthetic aperture radar imagery, Arctic sea-ice volume and export derived from multisensor satellite data, and melt pond fraction and sea-ice concentration using Soil Moisture and Ocean Salinity (SMOS) radiometer data. Forecasts of July sea-ice conditions from initial conditions in May showed substantial improvement in some Arctic regions after adding sea-ice thickness (SIT) data to the model initialization. The SIT initialization also improved seasonal forecasts for years with extremely low summer sea-ice extent. New SPICES sea-ice products have a demonstrable level of maturity, and with a reasonable amount of further work they can be integrated into various operational sea-ice services.</jats:p
Operational Service for Mapping the Baltic Sea Landfast Ice Properties
The Baltic Sea is partly covered by sea ice in every winter season. Landfast ice (LFI) on the Baltic Sea is a place for recreational activities such as skiing and ice fishing. Over thick LFI ice roads can be established between mainland and islands to speed up transportation compared to the use of ferries. LFI also allows transportation of material to or from islands without piers for large ships. For all these activities, information on LFI extent and sea ice thickness, snow thickness and degree of ice deformation on LFI is very important. We generated new operational products for these LFI parameters based on synthetic aperture radar (SAR) imagery and existing products and prediction models on the Baltic Sea ice properties. The products are generated daily and have a 500 m pixel size. They are visualized in a web-portal titled “Baltic Sea landfast ice extent and thickness (BALFI)” which has free access. The BALFI service was started in February 2019. Before the BALFI service, information on the LFI properties in fine scale (<1 km) was not available from any single source or product. We studied the accuracy and quality of the BALFI products for the ice season 2019–2020 using ice charts and in-situ coastal ice station data. We suggest that the current products give usable information on the Baltic LFI properties for various end-users. We also identify some topics for the further development of the BALFI products
MODIS Sea Ice Thickness and Open Water–Sea Ice Charts over the Barents and Kara Seas for Development and Validation of Sea Ice Products from Microwave Sensor Data
We have developed algorithms and procedures for calculating daily sea ice thickness (SIT) and open water–sea ice (OWSI) charts, based on the Moderate Resolution Imaging Spectroradiometer (MODIS), ice surface temperature (IST) (night-time only), and reflectance ( R ) swath data, respectively. The resolution of the SIT chart is 1 km and that of the OWSI chart is 250 m. The charts are targeted to be used in development and validation of sea ice products from microwave sensor data. We improve the original MODIS cloud masks for the IST and R data, with a focus on identifying larger cloud-free areas in the data. The SIT estimation from the MODIS IST swath data follows previous studies. The daily SIT chart is composed from available swath charts by assigning daily median SIT to a pixel. The OWSI classification is simply conducted by a fixed threshold for the MODIS band 1 R . This was based on manually selected R data for various ice types in late winter, early melt, and advanced melt conditions. The composition procedures for the daily SIT and OWSI charts somewhat compensates for errors due to the undetected clouds. The SIT and OWSI charts were compared against manual ice charts by Arctic and Antarctic Research Institute in Russia and by Norwegian Meteorological Institute, respectively, and on average, a good relationship between the charts was found. Pixel-wise comparison of the SIT and OWSI charts showed very good agreement in open water vs. sea ice classification, which gives further confidence on the reliability of our algorithms. We also demonstrate usage of the MODIS OWSI and SIT charts for validation of sea ice concentration charts based on the SENTINEL-1 SAR and AMSR2 radiometer data and two different algorithms