26 research outputs found

    Erhöhte Trockenstresstoleranz von Kleegras nach reduzierter Bodenbearbeitung

    Get PDF
    Grass-clover leys are an integral part of organic rotations. We performed an experiment with reduced tillage (RT) and conventional tillage (CT) using mouldboard ploughing in a rotation in Frick (Switzerland) on a heavy soil and 1000 mm mean annual precipitation. The grass-clover mixture was sawn in autumn 2005 after uniform seed bed preparation with a rotary hoe in both tillage systems without ploughing. After emergence most of the clover seedlings collapsed in the CT plots due to draught, while they survived in the RT plots. This led to a much higher share of clover in the mixture under RT. Grass-clover yields were 29 and 23% higher in RT than in CT plots in the first and second year of cultivation in 2006 and 2007, respectively. Grass grown in RT plots was higher in nitrogen (N), phosphorous (P), potassium (K) and magnesium (Mg) content than in CT plots; clover contained solely more P in RT plots. Over all grass-clover had better growing conditions in RT compared to CT plots in our experiment, reflecting after-effects of the differentiated tillage schemes applied for the preceding arable crops. It is suggested that reduced tillage has a high potential to improve water stress tolerance of cropping systems

    Safety Case Driven Development for Medical Devices

    No full text
    Medical devices are safety-critical systems that must comply with standards during their development process because of their intrinsic potential of producing harms. Although the existing trend of an increasing complexity of medical hardware and software components, very little has been done in order to apply more mature safety practices already present on other industrial scenarios. This paper proposes a methodology to enhance the Model-Based System Engineering (MBSE) state-of-art practices from the safety perspective, encouraging the use of safety cases and providing guidance on how to show the correspondent traceability for the development artifacts. We illustrate our methodology and its usage in the context of an industrial Automated External Defibrillator (AED). We suggest that medical device industry could learn from other domains and adapt its development to take into account the hazards and risks along the development, providing more sophisticated justification, as, for example, the impact of design decisions

    Nitrogen Capture by Grapevine Roots and Arbuscular Mycorrhizal Fungi from Legume Cover-Crop Residues Under Low Rates of Mineral Fertilization

    Get PDF
    The influence of mineral fertilization on root uptake and arbuscular mycorrhizal fungi-mediated 15N capture from labeled legume (Medicago polymorpha) residue was examined in winegrapes (Vitis vinifera) in the greenhouse, to evaluate compatibility of fertilization with incorporation of cover-crop residue in winegrape production. Plants grown in marginal vineyard soil were either fertilized with 0.25× Hoagland’s solution or not. This low fertilization rate represents the deficit management approach typical of winegrape production. Access to residue in a separate compartment was controlled to allow mycorrhizal roots (roots + hyphae), hyphae (hyphae-intact), or neither (hyphae-rotated) to proliferate in the residue by means of mesh core treatments. Leaves were weekly analyzed for 15N. On day 42, plants were analyzed for 15N and biomass; roots were examined for intraradical colonization; and soils were analyzed for 15N, inorganic N, Olsen-P, X-K, and extraradical colonization. As expected, extraradical colonization of soil outside the cores was unaffected by mesh core treatment, while that inside the cores varied significantly. 15N atom% excess was highest in leaves of roots + hyphae. In comparison, leaf 15N atom% excess in hyphae-intact was consistently intermediate between roots + hyphae and hyphae-rotated, the latter of which remained unchanged over time. Fertilization stimulated host and fungal growth, based on higher biomass and intraradical colonization of fertilized plants. Fertilization did not affect hyphal or root proliferation in residue but did lower %N derived from residue in leaves and stems by 50%. Our results suggest that even low fertilization rates decrease grapevine N uptake from legume crop residue by both extraradical hyphae and roots

    Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi

    No full text
    Plant growth-promoting rhizobacteria (PGPR) that produce antifungal metabolites are potential threats for the arbuscular mycorrhizal (AM) fungi known for their beneficial symbiosis with plants that is crucially important for low-input sustainable agriculture. To address this issue, we used a compartmented container system where test plants, Vigna radiata, could only reach a separate nutrient-rich compartment indirectly via the hyphae of AM fungi associated with their roots. In this system, where plants depended on nutrient uptake via AM symbiosis, we explored the impact of various PGPR. Plants were inoculated with or without a consortium of four species of AM fungi (Glomus coronatum, Glomus etunicatum, Glomus constrictum, and Glomus intraradices), and one or more of the following PGPR strains: phenazine producing (P+) and phenazine-less mutant (P-), diacetylphloroglucinol (DAPG) producing (G(+)) and DAPG-less mutant (G(-)) strains of Pseudomonas fluorescens, and an unknown antifungal metabolite-producing Alcaligenes faecalis strain, SLHRE425 (D). PGPR exerted only a small if any effect on the performance of AM symbiosis. G(+) enhanced AM root colonization and had positive effects on shoot growth and nitrogen content when added alone, but not in combination with P+. D negatively influenced AM root colonization, but did not affect nutrient acquisition. Principal component analysis of all treatments indicated correlation between root weight, shoot weight, and nutrient uptake by AM fungus. The results indicate that antifungal metabolites producing PGPR do not necessarily interfere with AM symbiosis and may even promote it thus carefully chosen combinations of such bioinoculants could lead to better plant growth
    corecore