29 research outputs found

    Chemical Doping of Conjugated Polymers with the Strong Oxidant Magic Blue

    Get PDF
    Molecular doping of organic semiconductors is a powerful tool for the optimization of organic electronic devices and organic thermoelectric materials. However, there are few redox dopants that have a sufficiently high electron affinity to allow the doping of conjugated polymers with an ionization energy of more than 5.3\ua0eV. Here, p-doping of a broad palette of conjugated polymers with high ionization energies is achieved by using the strong oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Magic Blue). In particular diketopyrrolopyrrole (DPP)-based copolymers reach a conductivity of up to 100 S cm−1 and a thermoelectric power factor of 10 \ub5W m−1 K−2. Further, both electron paramagnetic resonance (EPR) as well as a combination of spectroelectrochemistry and chronoamperometry is used to estimate the charge-carrier density of the polymer PDPP-3T doped with Magic Blue. A molar attenuation coefficient of 6.0\ua0\ub1\ua00.2 7 103 m2 mol−1 is obtained for the first polaronic sub-bandgap absorption of electrochemically oxidized PDPP-3T. Comparison with chemically doped PDPP-3T suggests a charge-carrier density on the order of 1026 m−3, which yields a charge-carrier mobility of up to 0.5 cm2 V−1 s−1 for the most heavily doped material

    Electrically Conducting Elastomeric Fibers with High Stretchability and Stability

    Get PDF
    Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70\ua0\ub5m. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm−1, which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated

    Fragments of the nonlytic proline-rich antimicrobial peptide Bac5 kill Escherichia coli cells by inhibiting protein synthesis

    Get PDF
    Unlike most antimicrobial peptides (AMPs), the main mode of action of the subclass of proline-rich antimicrobial peptides (PrAMPs) is not based on disruption of the bacterial membrane. Instead, PrAMPs exploit the inner membrane transporters SbmA and YjiL/MdtM to pass through the bacterial membrane and enter the cytosol of specific Gram-negative bacteria, where they exert an inhibitory effect on protein synthesis. Despite sharing a high proline and arginine content with other characterized PrAMPs, the PrAMP Bac5 has a low sequence identity with them. Here we investigated the mode of action of three N-terminal Bac5 fragments, Bac5(1-15), Bac5(1-25), and Bac5(1-31). We show that Bac5(1-25) and Bac5(1-31) retained excellent antimicrobial activity toward Escherichia coli and low toxicity toward eukaryotic cells, whereas Bac5(1-15) was inactive. Bac5(1-25) and Bac5(1-31) inhibited bacterial protein synthesis in vitro and in vivo. Competition assays suggested that the binding site of Bac5 is within the ribosomal tunnel, where it prevents the transition from the initiation to the elongation phase of translation, as reported for other PrAMPs, such as the bovine PrAMP Bac7. Surprisingly, unlike Bac7, Bac5(1-25) exhibited speciesspecific inhibition, being an excellent inhibitor of protein synthesis on E. coli ribosomes but a poor inhibitor on Thermus thermophilus ribosomes. This indicates that while Bac5 most likely has an overlapping binding site with Bac7, the mode of interaction is distinct, suggesting that Bac5 fragments may be interesting alternative lead compounds for the development of new antimicrobial agents

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0π+π\rho^0\to\pi^+\pi^- and J/ψμ+μJ/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Accelerating Drug Discovery Efforts for Trypanosomatidic Infections Using an Integrated Transnational Academic Drug Discovery Platform

    Get PDF
    According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion\u2013toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 (TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain

    A time-resolved proteomic and prognostic map of COVID-19

    Get PDF
    COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Chemical Doping of Conjugated Polymers with the Strong Oxidant Magic Blue

    No full text
    Molecular doping of organic semiconductors is a powerful tool for the optimization of organic electronic devices and organic thermoelectric materials. However, there are few redox dopants that have a sufficiently high electron affinity to allow the doping of conjugated polymers with an ionization energy of more than 5.3\ua0eV. Here, p-doping of a broad palette of conjugated polymers with high ionization energies is achieved by using the strong oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate (Magic Blue). In particular diketopyrrolopyrrole (DPP)-based copolymers reach a conductivity of up to 100 S cm−1 and a thermoelectric power factor of 10 \ub5W m−1 K−2. Further, both electron paramagnetic resonance (EPR) as well as a combination of spectroelectrochemistry and chronoamperometry is used to estimate the charge-carrier density of the polymer PDPP-3T doped with Magic Blue. A molar attenuation coefficient of 6.0\ua0\ub1\ua00.2 7 103 m2 mol−1 is obtained for the first polaronic sub-bandgap absorption of electrochemically oxidized PDPP-3T. Comparison with chemically doped PDPP-3T suggests a charge-carrier density on the order of 1026 m−3, which yields a charge-carrier mobility of up to 0.5 cm2 V−1 s−1 for the most heavily doped material

    GWAS meta-analysis of 16 790 patients with Barrett\u2019s oesophagus and oesophageal adenocarcinoma identifies 16 novel genetic risk loci and provides insights into disease aetiology beyond the single marker level

    No full text

    GWAS meta-analysis of 16 790 patients with Barrett’s oesophagus and oesophageal adenocarcinoma identifies 16 novel genetic risk loci and provides insights into disease aetiology beyond the single marker level

    No full text
    corecore