10 research outputs found

    Anaplasma phagocytophilum in horses and ticks in Tunisia.

    Get PDF
    International audienceBACKGROUND: Anaplasma phagocytophilum , the causative agent of granulocytic anaplasmosis, affects several species of wild and domesticated mammals, including horses. We used direct and indirect methods to compare and evaluate exposure to A. phagocytophilum in horses in northern Tunisia. METHODS: Serum from 60 horses was tested by IFA for antibodies to A. phagocytophilum , and whole blood was tested for A. phagocytophilum 16S rRNA gene using a nested-PCR. To examine the risk of A. phagocytophilum transmission, 154 ticks that had been collected from horses were examined for the presence of A. phagocytophilum by nested-PCR targeting 16S rRNA gene. RESULTS: This is the first time that A. phagocytophilum has been detected in horses in Tunisia, with an overall seroprevalence of 40/60 (67%). Six of the seroreactive samples (10%) had an IFA titer of 1:80, 14 (23%) of 1:160, 8 (13%) of 1:320 and 12 (20%) a titer 1 ≄ 640. The seroprevalence revealed no significant regional and sex differences. In contrast, a significant difference was observed between breeds. Eight (13%) of the horses were positive for A. phagocytophilum in the PCR, with no significant breed and age differences. Hyalomma marginatum was a predominant tick species (130/154), and 3 were infected by A. phagocytophilum (a prevalence of 2.3%). The concordance rate of A. phagocytophilum detection between IFA and PCR had a k value of -0.07. CONCLUSIONS: The results presented in this study suggest that horses infested by ticks in Tunisia are exposed to A. phagocytophilum

    Detection and Identification of Ehrlichia spp. in Ticks Collected in Tunisia and Morocco

    No full text
    A broad-range 16S rRNA gene PCR assay followed by partial sequencing of the 16S rRNA gene was used for the detection of members of the family Anaplasmataceae in ticks in North Africa. A total of 418 questing Ixodes ricinus ticks collected in Tunisia and Morocco, as well as 188 Rhipicephalus ticks from dogs and 52 Hyalomma ticks from bovines in Tunisia, were included in this study. Of 324 adult I. ricinus ticks, 16.3% were positive for Ehrlichia spp., whereas only 3.4 and 2.8% of nymphs and larvae, respectively, were positive. A large heterogeneity was observed in the nucleotide sequences. Partial sequences identical to that of the agent of human granulocytic ehrlichiosis (HGE) were detected in I. ricinus and Hyalomma detritum, whereas partial sequences identical to that of Anaplasma platys were detected in Rhipicephalus sanguineus. However, variants of Anaplasma, provisionally designated Anaplasma-like, were predominant in the I. ricinus tick population in Maghreb. Otherwise, two variants of the genus Ehrlichia were detected in I. ricinus and H. detritum. Surprisingly, a variant of Wolbachia pipientis was evidenced from I. ricinus in Morocco. These results emphasized the potential risk of tick bites for human and animal populations in North Africa

    A molecular study of tick-borne haemoprotozoan parasites (Theileria and Babesia) in small ruminants in Northern Tunisia

    No full text
    International audienceIn this study, the frequency of Theileria and Babesia species in sheep and goats was assessed via reverse line blotting (RLB). A total of 263 apparently healthy sheep and goats, from 16 randomly selected flocks located in 9 localities situated in 3 bioclimatic zones in Tunisia, were investigated for the blood protozoans. RLB hybridization with polymerase chain reaction detected only Theileria ovis in sheep and goats, accounting for 22.4% (95% confidence interval [CI]: 17.6-27.1%) positive samples. The infection rate in sheep (28.1%; 95% CI: 23.8-32.3%) was higher than in goats (4.7%; 95% CI: -10.9 to 20.4%). Neither Babesia nor mixed infections were detected. Only two Ixodid tick species (Rhipicephalus turanicus and Rhipicephalus bursa) were collected from the examined sheep and goats in 5 localities. R. turanicus was the dominant species (95.5%) collected mainly in the humid zone, while apparently rare in the sub-humid zone. R. bursa was the only species collected in the semi-arid area. RLB analysis identified six different piroplasms in ticks, with an overall prevalence of 31.5% (95% CI: 28.1-34.9%). Twenty percent (95% CI: 14.4-25.5%) of the collected ticks tested positive for Theileria spp., 3% (95% CI: -5.6 to 11.6%) for Babesia spp. and 0.9% (95% CI: -8.1 to 9.9%) of the ticks harbored both genera; several of these species are not known to occur in small ruminants. This is the first report on the detection of Theileria and Babesia species DNA in small ruminants and ticks in Tunisia. (C) 2013 Elsevier B.V. All rights reserved

    A Survey of Aedes (Diptera: Culicidae) Mosquitoes in Tunisia and the Potential Role of Aedes detritus and Aedes caspius in the Transmission of Zika Virus

    No full text
    International audienceThe present study aimed to update the list of Aedes mosquito species occurring in Tunisia and to test the vector competence of Aedes (Ochlerotatus) caspius (Pallas) and Ae. (Ochlerotatus) detritus (Haliday), the locally most abundant and widespread species, to transmit Zika virus (ZIKV). In 2017-2018, mosquito larvae were collected from 39 different larval habitats in seven bioclimatic zones of Tunisia. The salinity and pH of each breeding site were measured. The survey revealed the presence of 10 Aedes species in Tunisia: Ae. (Stegomyia) albopictus (Skuse), Ae. (Ochlerotatus) berlandi (SĂ©guy), Ae. caspius, Ae. detritus, Ae. (Finlaya) echinus (Edwards), Ae. (Finlaya) geniculatus (Olivier), Ae. (Acartomyia) mariae (Sergent and Sergent), Ae. (Ochlerotatus) pulcritarsis (Rondani), Ae. (Aedimorphus) vexans (Meigen), and Ae. (Fredwardsius) vittatus (Bigot). Of these 10 species, Ae. caspius and Ae. detritus were the most abundant in Tunisia. Aedes detritus and Ae. caspius larvae were reared until the imago stage under insectary conditions to test autogeny. The study showed that Ae. detritus is autogenous and stenogamous and Ae. caspius, anautogenous and eurygamous. Finally, the collected strains of these two species were experimentally infected with the Asian genotype of ZIKV, originally isolated from a patient in April 2014 in New Caledonia, to test their vector competence. Neither of these species was able to transmit ZIKV at 7 and 14 d postexposure. Further investigations are needed to test the competence of other Tunisian mosquito species that may be associated with ZIKV transmission

    Borrelia crocidurae infection of Ornithodoros erraticus (Lucas, 1849) ticks in Tunisia.

    Get PDF
    International audienceTick-borne relapsing fever (TBRF) is caused by Borrelia species transmitted to humans by infected Ornithodoros sp. ticks. The disease has been rarely described in North Africa, and in Tunisia the local transmission of TBRF seems to have disappeared or is undiagnosed. A longitudinal study was conducted in 14 sites located in four different bioclimatic zones of Tunisia to assess both the distribution of Ornithodoros sp. and their infection rate with the relapsing fever Borrelia sp. Three polymerase chain reaction methods targeting the 16S rRNA, the intergenic spacer, and the fla (flagellin) genes were used and phylogenetic analyses were carried out. Three hundred and fifty-eight specimens of Ornithodoros were collected: O. erraticus (previously termed "small variety") (n = 190) and O. normandi (n = 168). Borrelia crocidurae DNA was detected in 15.1% of O. erraticus (small variety) (24 out of the 159 randomly selected for testing) collected in rodent burrows situated in the arid and Saharan areas in southern Tunisia. Molecular analysis targeting the 16S rRNA gene and the noncoding intergenic spacer domain showed good resolution for this Borrelia sp., although no molecular polymorphism was evidenced according to location. In contrast, none of the 133 O. normandi, also randomly selected for testing, was infected by Borrelia sp. and these ticks were restricted to the subhumid and semiarid zones in northern Tunisia. Both O. erraticus (small variety) and O. normandi were found in Tunisia and the high B. crocidurae infection rate found in O. erraticus highlights the risk of TBRF transmission in the southern part of the country

    Canine leishmaniosis in Tunisia: Growing prevalence, larger zones of infection

    No full text
    International audienceBackgroundDiscovered by Nicolle and Comte in 1908 in Tunisia, Leishmania infantum is an intracellular protozoan responsible for zoonotic canine leishmaniosis (CanL) and zoonotic human visceral leishmaniasis (HVL). It is endemic in several regions of the world, including Tunisia, with dogs considered as the main domestic reservoir. The geographic expansion of canine leishmaniosis (CanL) has been linked to global environmental changes that have affected the density and the distribution of its sand fly vectors.Methodology/Principal findingsIn this study, a cross-sectional epidemiological survey on CanL was carried out in 8 localities in 8 bioclimatic areas of Tunisia. Blood samples were taken from 317 dogs after clinical examination. Collected sera were tested by indirect fluorescent antibody test (IFAT; 1:80) for the presence of anti-Leishmania infantum antibodies. The overall seroprevalence was 58.3% (185/317). Among positive dogs, only 16.7% showed clinical signs suggestive of leishmaniosis. Seroprevalence rates varied from 6.8% to 84.6% and from 28% to 66% by bioclimatic zone and age group, respectively. Serological positivity was not statistically associated with gender. The presence of Leishmania DNA in blood, using PCR, revealed 21.2% (64/302) prevalence in dogs, which varied by bioclimatic zone (7.3% to 31%) and age group (7% to 25%). The entomological survey carried out in the studied localities showed 16 species of the two genera (Phlebotomus and Sergentomyia). P. perniciosus, P. papatasi, and P. perfiliewi were the most dominant species with relative abundances of 34.7%, 25% and 20.4%, respectively.Conclusions/SignificanceThe present report suggests a significant increase of CanL in all bioclimatic areas in Tunisia and confirms the ongoing spread of the infection of dogs to the country’s arid zone. Such an expansion of infection in dog population could be attributed to ecological, agronomic, social and climatic factors that affect the presence and density of the phlebotomine vectors

    The recently introduced Aedes albopictus in Tunisia has the potential to transmit chikungunya, dengue and Zika viruses

    No full text
    International audienceThe mosquito Aedes albopictus was detected for the first time in Tunisia in 2018. With its establishment in the capital city of Tunis, local health authorities fear the introduction of new human arboviral diseases, like what happened in Europe with unexpected local cases of chikungunya, dengue and Zika. Even though this mosquito is competent to transmit the arboviruses mentioned above, the transmission level will vary depending on the couple, mosquito population and virus genotype. Here, we assessed the vector competence of Ae. albopictus Tunisia by experimental infections with chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viruses. We found that Ae. albopictus Tunisia was highly competent for CHIKV (transmission efficiency of 25% at 21 post-infection) and to a lesser extent, for ZIKV (8.7%) and DENV (8.3%). Virus was detected in mosquito saliva at day 3 (CHIKV), day 10 (ZIKV) and day 21 (DENV) post-infection. These results suggest that the risk of emergence of chikungunya is the highest imposing a more sustained surveillance to limit Ae. albopictus populations in densely populated urban dwellings and at the entry points of travelers returning from CHIKV-endemic regions

    Hyalomma dromedarii (Acari: Ixodidae) Salivary Gland Extract Inhibits Angiogenesis and Exhibits In Vitro Antitumor Effects.

    No full text
    International audienceHard ticks (Acari: Ixodidae) are blood-sucking ectoparasites characterized by the extended period of their attachment to their host. To access their bloodmeal, ticks secrete saliva containing a range of molecules that target the host's inflammation, immune system, and hemostatic components. Some of these molecules reportedly possess antiangiogenic and antitumor properties. The present study describes our investigation, the first of its kind, of the antiangiogenic and antitumoral effects of the Hyalomma dromedarii Koch, 1844 (Acari: Ixodidae), salivary gland extract (SGE), which inhibited the adhesion and migration of Human Umbilical Vein Endothelial Cells (HUVECs) in a dose-dependent manner, as well as angiogenesis in the Chick Chorioallantoic Membrane model. Interestingly, H. dromedarii SGE exerted an antiproliferative effect on U87 glioblastoma cells and inhibited their adhesion and migration to fibrinogen. These results open up new possibilities for characterizing and developing new molecules involved in the key steps of tumor progression

    High-resolution melting analysis identifies reservoir hosts of zoonotic Leishmania parasites in Tunisia

    No full text
    International audienceBackground: Leishmaniasis is endemic in Tunisia and presents with different clinical forms, caused by the species Leishmania infantum, Leishmania major, and Leishmania tropica. The life cycle of Leishmania is complex and involves several phlebotomine sand fly vectors and mammalian reservoir hosts. The aim of this work is the development and evaluation of a high-resolution melting PCR (PCR-HRM) tool to detect and identify Leishmania parasites in wild and domestic hosts, constituting confirmed (dogs and Meriones rodents) or potential (hedgehogs) reservoirs in Tunisia. Methods: Using in vitro-cultured Leishmania isolates, PCR-HRM reactions were developed targeting the 7SL RNA and HSP70 genes. Animals were captured or sampled in El Kef Governorate, North West Tunisia. DNA was extracted from the liver, spleen, kidney, and heart from hedgehogs (Atelerix algirus) (n = 3) and rodents (Meriones shawi) (n = 7) and from whole blood of dogs (n = 12) that did not present any symptoms of canine leishmaniasis. In total, 52 DNA samples were processed by PCR-HRM using both pairs of primers. Results: The results showed melting curves enabling discrimination of the three Leishmania species present in Tunisia, and were further confirmed by Sanger sequencing. Application of PCR-HRM assays on reservoir host samples showed that overall among the examined samples, 45 were positive, while seven were negative, with no Leishmania infection. Meriones shawi were found infected with L. major, while dogs were infected with L. infantum. However, coinfections with L. major/L. infantum species were detected in four Meriones specimens and in all tested hedgehogs. In addition, multiple infections with the three Leishmania species were found in one hedgehog specimen. Sequence analyses of PCR-HRM products corroborated the Leishmania species found in analyzed samples. Conclusions: The results of PCR-HRM assays applied to field specimens further support the possibility of hedgehogs as reservoir hosts of Leishmania. In addition, we showed their usefulness in the diagnosis of canine leishmaniasis, specifically in asymptomatic dogs, which will ensure a better evaluation of infection extent, thus improving elaboration of control programs. This PCR-HRM method is a robust and reliable tool for molecular detection and identification of Leishmania and can be easily implemented in epidemiological surveys in endemic regions
    corecore