692 research outputs found

    Barrier, converting, and tray-forming properties of paperboard packaging materials coated with waterborne dispersions

    Get PDF
    In this work, different food-contact experimental and commercial aqueous polymeric dispersions were applied to paperboard via rod coating technology to achieve <5% non-cellulosic content. Barrier (water, moisture and grease), mechanical (tensile and bending) and converting (heat-sealing and creasing) properties were analysed before tray formation trials on pilot-scale equipment. Dispersion-coated samples were compared against polyethylene terephthalate (PET) extrusion-coated paperboard, the principal industrial material used for food trays. Results show that, within the investigated properties, waterborne dispersions can achieve similar barrier properties compared with PET, yet at lower dry coat grammage (12 g/m(2) vs. 40 g/m(2 )of PET-coated paperboard). Additionally, the investigated coatings heat-sealed at temperatures as low as 80-90(degrees)C, almost 100(degrees)C less than PET; however, lower seal forces could be achieved (15-20 N/(25 mm) vs. 23 N/(25 mm) of PET-coated paperboard). Paperboard delamination occurred at the highest seal forces. Dispersion-coated trays were obtained at 4.5-5.0% blank moisture content. Formed trays at industrial processing parameters showed critical coating damage during converting due to tensile stresses. This work shows that milder processing conditions allow a reduction in coat defects

    Progress towards high efficiency thin-film III-V quantum dot solar cells for space

    Get PDF
    This work summarizes our results in the development of high efficiency III-V quantum dot (QD) solar cells, aimed at tackling with two of the most relevant issues posed by QD solar cells (QDSCs), namely the degradation of open circuit voltage and the weak photon harvesting by QDs. In particular, we report our latest achievements in: i) The molecular beam epitaxy growth of high-quality QDSCs, demonstrating Voc as high as 0.94 V and low penalty (~ 40 mV) with respect to the single-junction reference cell. ii) The development by nanoimprint lithography of metal/polymer back reflectors with high diffraction efficiency, enabling four times increase of the QD photogenerated current. Experimental results are discussed with the support of numerical simulations

    Multitemporaalisen hyper- ja multispektrisen UAV kuvauksen käyttö kuusen kaarnakuoriaistuhoissa

    Get PDF
    Various biotic and abiotic stresses are threatening forests. Modern remote sensing technologies provide powerful means for monitoring forest health, and provide a sustainable basis for forest management and protection. The objective of this study was to develop unmanned aerial vehicle (UAV) based spectral remote sensing technologies for tree health assessment, particularly, for detecting the European spruce bark beetle (Ips typographus L.) attacks. Our focus was to study the early detection of bark beetle attack, i.e. the “green attack” phase. This is a difficult remote sensing task as there does not exist distinct symptoms that can be observed by the human eye. A test site in a Norway spruce (Picea abies (L.) Karst.) dominated forest was established in Southern-Finland in summer 2019. It had an emergent bark beetle outbreak and it was also suffering from other stress factors, especially the root and butt rot (Heterobasidion annosum (Fr.) Bref. s. lato). Altogether seven multitemporal hyper- and multispectral UAV remote sensing datasets were captured from the area in August to October 2019. Firstly, we explored deterioration of tree health and development of spectral symptoms using a time series of UAV hyperspectral imagery. Secondly, we trained assessed a machine learning model for classification of spruce health into classes of “bark beetle green attack”, “root-rot”, and “healthy”. Finally, we demonstrated the use of the model in tree health mapping in a test area. Our preliminary results were promising and indicated that the green attack phase could be detected using the accurately calibrated spectral image data.Peer reviewe

    Revisiting the personal protective equipment components of transmission-based precautions for the prevention of COVID-19 and other respiratory virus infections in healthcare

    Get PDF
    The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice

    Revisiting the personal protective equipment components of transmission-based precautions for the prevention of COVID-19 and other respiratory virus infections in healthcare

    Get PDF
    The COVID-19 pandemic highlighted some potential limitations of transmission-based precautions. The distinction between transmission through large droplets vs aerosols, which have been fundamental concepts guiding infection control measures, has been questioned, leading to considerable variation in expert recommendations on transmission-based precautions for COVID-19. Furthermore, the application of elements of contact precautions, such as the use of gloves and gowns, is based on low-quality and inconclusive evidence and may have unintended consequences, such as increased incidence of healthcare-associated infections and spread of multidrug-resistant organisms. These observations indicate a need for high-quality studies to address the knowledge gaps and a need to revisit the theoretical background regarding various modes of transmission and the definitions of terms related to transmission. Further, we should examine the implications these definitions have on the following components of transmission-based precautions: (i) respiratory protection, (ii) use of gloves and gowns for the prevention of respiratory virus infections, (iii) aerosol-generating procedures and (iv) universal masking in healthcare settings as a control measure especially during seasonal epidemics. Such a review would ensure that transmission-based precautions are consistent and rationally based on available evidence, which would facilitate decision-making, guidance development and training, as well as their application in practice.</p

    Genetic predisposition to adiposity is associated with increased objectively assessed sedentary time in young children.

    Get PDF
    Increased sedentariness has been linked to the growing prevalence of obesity in children, but some longitudinal studies suggest that sedentariness may be a consequence rather than a cause of increased adiposity. We used Mendelian randomization to examine the causal relations between body mass index (BMI) and objectively assessed sedentary time and physical activity in 3-8 year-old children from one Finnish and two Danish cohorts [NTOTAL=679]. A genetic risk score (GRS) comprised of 15 independent genetic variants associated with childhood BMI was used as the instrumental variable to test causal effects of BMI on sedentary time, total physical activity, and moderate-to-vigorous physical activity (MVPA). In fixed effects meta-analyses, the GRS was associated with 0.05 SD/allele increase in sedentary time (P=0.019), but there was no significant association with total physical activity (beta=0.011 SD/allele, P=0.58) or MVPA (beta=0.001 SD/allele, P=0.96), adjusting for age, sex, monitor wear-time and first three genome-wide principal components. In two-stage least squares regression analyses, each genetically instrumented one unit increase in BMI z-score increased sedentary time by 0.47 SD (P=0.072). Childhood BMI may have a causal influence on sedentary time but not on total physical activity or MVPA in young children. Our results provide important insights into the regulation of movement behaviour in childhood

    Cross-validation of generic risk assessment tools for animal disease incursion based on a case study for African swine fever

    Get PDF
    In recent years, several generic risk assessment (RA) tools have been developed that can be applied to assess the incursion risk of multiple infectious animal diseases allowing for a rapid response to a variety of newly emerging or re-emerging diseases. Although these tools were originally developed for different purposes, they can be used to answer similar or even identical risk questions. To explore the opportunities for cross-validation, seven generic RA tools were used to assess the incursion risk of African swine fever (ASF) to the Netherlands and Finland for the 2017 situation and for two hypothetical scenarios in which ASF cases were reported in wild boar and/or domestic pigs in Germany. The generic tools ranged from qualitative risk assessment tools to stochastic spatial risk models but were all parameterized using the same global databases for disease occurrence and trade in live animals and animal products. A comparison of absolute results was not possible, because output parameters represented different endpoints, varied from qualitative probability levels to quantitative numbers, and were expressed in different units. Therefore, relative risks across countries and scenarios were calculated for each tool, for the three pathways most in common (trade in live animals, trade in animal products, and wild boar movements) and compared. For the 2017 situation, all tools evaluated the risk to the Netherlands to be higher than Finland for the live animal trade pathway, the risk to Finland the same or higher as the Netherlands for the wild boar pathway, while the tools were inconclusive on the animal products pathway. All tools agreed that the hypothetical presence of ASF in Germany increased the risk to the Netherlands, but not to Finland. The ultimate aim of generic RA tools is to provide risk-based evidence to support risk managers in making informed decisions to mitigate the incursion risk of infectious animal diseases. The case study illustrated that conclusions on the ASF risk were similar across the generic RA tools, despite differences observed in calculated risks. Hence, it was concluded that the cross-validation contributed to the credibility of their results.info:eu-repo/semantics/publishedVersio

    Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Get PDF
    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10(-8)) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10(-14)). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10(-6) also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology
    corecore