19 research outputs found

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.Supplementary Figure S1: Filtered location data (black) and tag deployment locations (red) for each species. Maps are Lambert Azimuthal projections extending from 90° S to 20° S.Supplementary Table S1: Names and coordinates of the major study sites in the Southern Ocean and on the Antarctic Continent where tracking devices were deployed on the selected species (indicated by their 4-letter codes in the last column).Online Table 1: Description of fields (column names) in the metadata and data files.Supranational committees and organisations including the Scientific Committee on Antarctic Research Life Science Group and BirdLife International. National institutions and foundations, including but not limited to Argentina (Dirección Nacional del Antártico), Australia (Australian Antarctic program; Australian Research Council; Sea World Research and Rescue Foundation Inc., IMOS is a national collaborative research infrastructure, supported by the Australian Government and operated by a consortium of institutions as an unincorporated joint venture, with the University of Tasmania as Lead Agent), Belgium (Belgian Science Policy Office, EU Lifewatch ERIC), Brazil (Brazilian Antarctic Programme; Brazilian National Research Council (CNPq/MCTI) and CAPES), France (Agence Nationale de la Recherche; Centre National d’Etudes Spatiales; Centre National de la Recherche Scientifique; the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB project “RAATD”; Fondation Total; Institut Paul-Emile Victor; Programme Zone Atelier de Recherches sur l’Environnement Antarctique et Subantarctique; Terres Australes et Antarctiques Françaises), Germany (Deutsche Forschungsgemeinschaft, Hanse-Wissenschaftskolleg - Institute for Advanced Study), Italy (Italian National Antarctic Research Program; Ministry for Education University and Research), Japan (Japanese Antarctic Research Expedition; JSPS Kakenhi grant), Monaco (Fondation Prince Albert II de Monaco), New Zealand (Ministry for Primary Industries - BRAG; Pew Charitable Trusts), Norway (Norwegian Antarctic Research Expeditions; Norwegian Research Council), Portugal (Foundation for Science and Technology), South Africa (Department of Environmental Affairs; National Research Foundation; South African National Antarctic Programme), UK (Darwin Plus; Ecosystems Programme at the British Antarctic Survey; Natural Environment Research Council; WWF), and USA (U.S. AMLR Program of NOAA Fisheries; US Office of Polar Programs).http://www.nature.com/sdataam2021Mammal Research Institut

    Potential for cascading impacts of environmental change and policy on indigenous culture

    No full text
    Global environmental and societal changes threaten the cultures of indigenous peoples and local communities (IPLC). Despite the importance of IPLC worldviews and knowledge to sustaining human well-being and biodiversity, risks to these cultural resources are commonly neglected in environmental governance, in part because impacts can be indirect and therefore difficult to evaluate. Here, we investigate the connectivity of values associated with the relationship Ngātiwai (a New Zealand Māori tribe) have with their environment. We show that mapping the architecture of values-environment relationships enables assessment of how deep into culture the impacts of environmental change or policy can cascade. Our results detail how loss of access to key environmental elements could potentially have extensive direct and cascading impacts on the cultural values of Ngātiwai, including environmental responsibilities. Thus, considering only direct effects of environmental change or policy on cultural resources, or treating IPLC social-ecological relations simplistically, can severely underestimate threats to cultures.peerReviewe

    The Universal Precautionary Principle: New Pillars and Pathways for Environmental, Sociocultural, and Economic Resilience

    Get PDF
    Global environmental degradation is linked to a worldwide erosion of ethnic identity and cultural diversity, as well as market disruption. Cultures rely heavily on the local environment around them, and local communities play a key role in conserving natural resources. People’s identity, connection with land, and the adaptation of Indigenous and local knowledge are prerequisites for resilience. Though the Environmental Precautionary Principle (EPP) aims to tackle environmental degradation by privileging the environment in the face of uncertainty, it is not sufficient on its own; it does not take into account the intimate connection between nature and local culture, nor does it prioritize community or cultural wellbeing. We suggest expanding this concept into a multi-faceted Universal Precautionary Principle (UPP), which recognizes people’s connection to the land, and elevates community, cultural, and economic wellbeing as equally important values alongside environmental concerns. Here, we coin the Universal Precautionary Principle, outline its four core pillars—systems, governance, diversity, and resilience—and introduce its three subsets: Environmental Precautionary Principle, Sociocultural Precautionary Principle, and Economic Precautionary Principle. We discuss potential outcomes of its application, and offer operational guidelines to implement the Universal Precautionary Principle in practice, before concluding that it is a crucial tool to build environmental, sociocultural, and economic resilience. In essence, reciprocity is the keystone for continuance—if the environment is healthy, people are more likely to be healthy. Equally, if people are healthy, the environment is more likely to be healthy; for both people and the environment to be healthy, their culture and economy must be healthy.Graduate and Postdoctoral StudiesOther UBCNon UBCReviewedFacult

    Mean colony counts of nesting territories (with colony counts from Ross Island 2012 for comparison) and <i>s</i>, a measure of the amplitude of colony size variations (<i>n</i> is the total number of counts per colony), for colonies in the southern Ross Sea metapopulation and along the Victoria Land coast between 1981 and 2012.

    No full text
    <p>Mean colony counts of nesting territories (with colony counts from Ross Island 2012 for comparison) and <i>s</i>, a measure of the amplitude of colony size variations (<i>n</i> is the total number of counts per colony), for colonies in the southern Ross Sea metapopulation and along the Victoria Land coast between 1981 and 2012.</p
    corecore