11 research outputs found

    A comparison of freezing-damage during isochoric and isobaric freezing of the potato.

    Get PDF
    BACKGROUND:Freezing is commonly used for food preservation. It is usually done under constant atmospheric pressure (isobaric). While extending the life of the produce, isobaric freezing has detrimental effects. It causes loss of food weight and changes in food quality. Using thermodynamic analysis, we have developed a theoretical model of the process of freezing in a constant volume system (isochoric). The mathematical model suggests that the detrimental effects associated with isobaric freezing may be reduced in an isochoric freezing system. To explore this hypothesis, we performed a preliminary study on the isochoric freezing of a produce with which our group has experience, the potato. METHOD:Experiments were performed in an isochoric freezing device we designed. The device is robust and has no moving parts. For comparison, we used a geometrically identical isobaric freezing device. Following freezing and thawing, the samples were weighed, examined with colorimetry, and examined with microscopy. RESULTS:It was found that potatoes frozen to -5 °C in an isochoric system experienced no weight loss and limited enzymatic browning. In contrast the -5 °C isobaric frozen potato experienced substantial weight loss and substantial enzymatic browning. Microscopic analysis shows that the structural integrity of the potato is maintained after freezing in the isochoric system and impaired after freezing in the isobaric system. DISCUSSION:Tissue damage during isobaric freezing is caused by the increase in extracellular osmolality and the mechanical damage by ice crystals. Our thermodynamic analysis predicts that during isochoric freezing the intracellular osmolality remains comparable to the extracellular osmolality and that isochoric systems can be designed to eliminate the mechanical damage by ice. The results of this preliminary study seem to confirm the theoretical predictions. CONCLUSION:This is a preliminary exploratory study on isochoric freezing of food. We have shown that the quality of a food product preserved by isochoric freezing is better than the quality of food preserved to the same temperature in isobaric conditions. Obviously, more extensive research remains to be done to extend this study to lower freezing temperatures and other food items

    Individual Microparticle Manipulation Using Combined Electroosmosis and Dielectrophoresis through a Si3N4 Film with a Single Micropore

    No full text
    Porous dielectric membranes that perform insulator-based dielectrophoresis or electroosmotic pumping are commonly used in microchip technologies. However, there are few fundamental studies on the electrokinetic flow patterns of single microparticles around a single micropore in a thin dielectric film. Such a study would provide fundamental insights into the electrokinetic phenomena around a micropore, with practical applications regarding the manipulation of single cells and microparticles by focused electric fields. We have fabricated a device around a silicon nitride film with a single micropore (2–4 µm in diameter) which has the ability to locally focus electric fields on the micropore. Single microscale polystyrene beads were used to study the electrokinetic flow patterns. A mathematical model was developed to support the experimental study and evaluate the electric field distribution, fluid motion, and bead trajectories. Good agreement was found between the mathematic model and the experimental data. We show that the combination of electroosmotic flow and dielectrophoretic force induced by direct current through a single micropore can be used to trap, agglomerate, and repel microparticles around a single micropore without an external pump. The scale of our system is practically relevant for the manipulation of single mammalian cells, and we anticipate that our single-micropore approach will be directly employable in applications ranging from fundamental single cell analyses to high-precision single cell electroporation or cell fusion

    Simultaneous electroporation and dielectrophoresis in non-electrolytic micro/nano-electroporation

    Get PDF
    Abstract It was recently shown that electrolysis may play a substantial detrimental role in microfluidic electroporation. To overcome this problem, we have developed a non-electrolytic micro/nano electroporation (NEME) electrode surface, in which the metal electrodes are coated with a dielectric. A COMSOL based numerical scheme was used to simultaneously calculate the excitation frequency and dielectric material properties dependent electric field delivered across the dielectric, fluid flow, electroporation field and Clausius-Mossotti factor for yeast and E. coli cells flowing in a channel flow across a NEME surface. A two-layer model for yeast and a three-layer model for E. coli was used. The numerical analysis shows that in NEME electroporation, the electric fields could induce electroporation and dielectrophoresis simultaneously. The simultaneous occurrence of electroporation and dielectrophoresis gives rise to several interesting phenomena. For example, we found that a certain frequency exists for which an intact yeast cell is drawn to the NEME electrode, and once electroporated, the yeast cell is pushed back in the bulk fluid. The results suggest that developing electroporation technologies that combine, simultaneously, electroporation and dielectrophoresis could lead to new applications. Obviously, this is an early stage numerical study and much more theoretical and experimental research is needed

    Individual Microparticle Manipulation Using Combined Electroosmosis and Dielectrophoresis through a Si3N4 Film with a Single Micropore.

    No full text
    Porous dielectric membranes that perform insulator-based dielectrophoresis or electroosmotic pumping are commonly used in microchip technologies. However, there are few fundamental studies on the electrokinetic flow patterns of single microparticles around a single micropore in a thin dielectric film. Such a study would provide fundamental insights into the electrokinetic phenomena around a micropore, with practical applications regarding the manipulation of single cells and microparticles by focused electric fields. We have fabricated a device around a silicon nitride film with a single micropore (2-4 µm in diameter) which has the ability to locally focus electric fields on the micropore. Single microscale polystyrene beads were used to study the electrokinetic flow patterns. A mathematical model was developed to support the experimental study and evaluate the electric field distribution, fluid motion, and bead trajectories. Good agreement was found between the mathematic model and the experimental data. We show that the combination of electroosmotic flow and dielectrophoretic force induced by direct current through a single micropore can be used to trap, agglomerate, and repel microparticles around a single micropore without an external pump. The scale of our system is practically relevant for the manipulation of single mammalian cells, and we anticipate that our single-micropore approach will be directly employable in applications ranging from fundamental single cell analyses to high-precision single cell electroporation or cell fusion
    corecore