11,591 research outputs found

    THE RELATIONSHIP BETWEEN MANAGERIAL HEURISTICS AND ECONOMICS IN PRICING RETAIL MEATS

    Get PDF
    This study develops a theoretical model of the multiproduct firm which allows for imperfect competition in the output market. Hypotheses are tested for retail meat prices concerning the degree and speed of price transmission, the effects of interfirm competition, and the interrelationship between prices within the store. Empirical results indicated that meat prices within a store were highly interrelated. Further, the firm was found to be very responsive to prices of competitors in the short run, but more responsive to wholesale price changes in the long run.Demand and Price Analysis,

    Longitudinal Polarization at future e+ee^+e^- Colliders and Virtual New Physics Effects

    Get PDF
    The theoretical merits of longitudinal polarization asymmetries of electron-positron annihilation into two final fermions at future colliders are examined, using a recently proposed theoretical description. A number of interesting features, valid for searches of virtual effects of new physics, is underlined, that is reminiscent of analogous properties valid on top of ZZ resonance. As an application to a concrete example, we consider the case of a model with triple anomalous gauge couplings and show that the additional information provided by these asymmetries would lead to a drastic reduction of the allowed domain of the relevant parameters.Comment: 18 pages and 1 figure. e-mail: [email protected]

    First-order nature of the ferromagnetic phase transition in (La-Ca)MnO_3 near optimal doping

    Full text link
    Neutron scattering has been used to study the nature of the ferromagnetic transition in single crystals of La_0.7Ca_0.3MnO_3 and La_0.8Ca_0.2MnO_3, and polycrystalline samples of La_0.67Ca_0.33MnO_3 and La_5/8Ca_3/8MnO_3 where the naturally occurring O-16 can be replaced with the O-18 isotope. Small angle neutron scattering on the x=0.3 single crystal reveals a discontinuous change in the scattering at the Curie temperature for wave vectors below ~0.065 A^-1. Strong relaxation effects are observed for this domain scattering, for the magnetic order parameter, and for the quasielastic scattering, demonstrating that the transition is not continuous in nature. There is a large oxygen isotope effect observed for the T_C in the polycrystalline samples. For the optimally doped x=3/8 sample we observed T_C(O-16)=266.5 K and T_C(O-18)=261.5 K at 90% O-18 substitution. The temperature dependence of the spin-wave stiffness is found to be identical for the two samples despite changes in T_C. Hence, T_C is not solely determined by the magnetic subsystem, but instead the ferromagnetic phase is truncated by the formation of polarons which cause an abrupt transition to the paramagnetic, insulating state. Application of uniaxial stress in the x=0.3 single crystal sharply enhances the polaron scattering at room temperature. Measurements of the phonon density-of-states show only modest differences above and below T_C and between the two different isotopic samples.Comment: 13 pages, 16 figures, submitted to Phys. Rev.

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    Neutron diffraction in a model itinerant metal near a quantum critical point

    Full text link
    Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008

    Antiferromagnetic critical pressure in URu2Si2 under hydrostatic conditions

    Full text link
    The onset of antiferromagnetic order in URu2Si2 has been studied via neutron diffraction in a helium pressure medium, which most closely approximates hydrostatic conditions. The antiferromagnetic critical pressure is 0.80 GPa, considerably higher than values previously reported. Complementary electrical resistivity measurements imply that the hidden order-antiferromagnetic bicritical point far exceeds 1.02 GPa. Moreover, the redefined pressure-temperature phase diagram suggests that the superconducting and antiferromagnetic phase boundaries actually meet at a common critical pressure at zero temperature.Comment: 5 pgs, 4 figs; AFM ordered moment revised to 0.5 muB, added and corrected citations and reference
    corecore