725 research outputs found

    Endovascular Repair of Abdominal Aortic Aneurysm does not Improve Early Survival versus Open Repair in Patients Younger than 60 Years

    Get PDF
    AbstractObjectivesMultiple randomised trials have demonstrated lower perioperative mortality after endovascular aneurysm repair (EVAR) compared to open surgical repair for infrarenal abdominal aortic aneurysms (AAAs). However, in these trials the mortality advantage for EVAR is being lost within 2 years of repair and the patients evaluated are relatively older with no study specifically comparing EVAR and open repair for patients younger than 60 years of age.DesignA retrospective analysis of prospectively collected data.Materials and methodsPatients younger than 60 years of age who underwent EVAR and open surgical repair for elective infrarenal AAA were identified from the 2007–09 National Surgical Quality Improvement Program (NSQIP) – a prospective database maintained at 237 centres across the United States. Univariate and multivariate analyses were performed.ResultsOf the 651 patients, 369 (56.7%) underwent EVAR and 282 (43.3%) underwent open repair. Thirty-day mortality for EVAR and open repair were 1.1% and 0.4%, respectively. This was not significantly different on univariate (P = 0.22) as well as multivariate (P = 0.69) analysis after controlling for other co-morbidities. On multivariate analysis, body mass index, history of stroke and bleeding disorder prior to surgery were associated with a higher 30-day mortality after AAA repair (combined open and EVAR).ConclusionsThese contemporary results demonstrate that the 30-day mortality rate after open repair is similar to that after EVAR in patients younger than 60 years with infrarenal AAA

    Analysis of Sociodemographic, Clinical, and Genomic Factors Associated with Breast Cancer Mortality in the Linked Surveillance, Epidemiology, and End Results and Medicare Database

    Get PDF
    Importance: Understanding interactions among health service, sociodemographic, clinical, and genomic factors in breast cancer disparities research has been limited by a disconnect between health services and basic biological approaches. Objective: To describe the first linkage of Surveillance, Epidemiology, and End Results (SEER)-Medicare data to physical tumor samples and to investigate the interaction among screening detection, socioeconomic status, tumor stage, tumor biology, and breast cancer outcomes within a single context. Design, Setting, and Participants: This population-based cohort study used tumor specimen blocks from a subset of women aged 66 to 75 years with newly diagnosed nonmetastatic, estrogen receptor-positive invasive breast cancer from January 1, 1993, to December 31, 2007. Specimens were obtained from the Iowa and Hawaii SEER Residual Tissue Repositories (RTRs) and linked with Medicare claims data and survival assessed through December 31, 2015. Data were analyzed from August 1, 2018, to July 25, 2021. Exposures: Screening- vs symptom-based detection of tumors was assessed using validated claims-based algorithms. Demographic factors and zip code-based educational attainment and poverty socioeconomic characteristics were obtained via SEER. Main Outcomes and Measures: Molecular subtyping and exploratory genomic analyses were completed using the NanoString Breast Cancer 360 gene expression panel containing the 50-gene signature classifier. Factors associated with overall and breast cancer-specific (BCS) survival were analyzed using Cox proportional hazards regression models combining sociodemographic, clinical, and genomic data. Results: SEER-Medicare data were available for 3522 women (mean [SD] age, 70.9 [2.6] years; 3049 [86.6%] White), of whom 1555 (44.2%) were diagnosed by screening mammogram. In the SEER-Medicare cohort, factors associated with increased BCS mortality included symptomatic detection (hazard ratio [HR], 1.49 [95% CI, 1.16-1.91]), advanced disease stage (HR for stage III, 2.33 [95% CI, 1.41-3.85]), and high-grade disease (HR, 1.85 [95% CI, 1.46-2.34]). The molecular cohort of 130 cases with luminal A/B cancer further revealed increased all-cause mortality associated with genomic upregulation of transforming growth factor β activation and p53 dysregulation (eg, p53 dysregulation: HR, 2.15 [95% CI, 1.20-3.86]) and decreased mortality associated with androgen receptor, macrophage, cytotoxicity, and Treg signaling (eg, androgen receptor signaling: HR, 0.23 [95% CI, 0.12-0.45]). Symptomatic detection (HR, 2.49 [95% CI, 1.19-5.20]) and zip codes with low levels of educational attainment (HR, 5.17 [95% CI, 2.12-12.60]) remained associated with mortality after adjusting for all clinical and demographic factors. Conclusions and Relevance: Linkage of SEER-Medicare data to physical tumor specimens may elucidate associations among biology, health care access, and disparities in breast cancer outcomes. The findings of this study suggest that screening detection and socioeconomic status are associated with survival in patients with locally advanced, estrogen receptor-positive tumors, even after incorporating clinical and genomic factors

    Characterisation of large area THGEMs and experimental measurement of the Townsend coefficients for CF4

    No full text
    Whilst the performance of small THGEMs is well known, here we consider the challenges in scaling these up to large area charge readouts. We first verify the expected gain of larger THGEMs by reporting experimental Townsend coefficients for a 10 cm diameter THGEM in low-pressure CF4_4. Large area 50 cm by 50 cm THGEMs were sourced from a commercial PCB supplier and geometrical imperfections were observed which we quantified using an optical camera setup. The large area THGEMs were experimentally characterised at Boulby Underground Laboratory through a series of gain calibrations and alpha spectrum measurements. ANSYS, Magboltz and Garfield++ simulations of the design of a TPC based on the large area THGEMs are presented. We also consider their implications for directional dark matter research and potential applications within nuclear security

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Coaches' learning and sustainability in high performance sport

    Get PDF
    In undertaking their complicated and multi-faceted work, high performance coaches have previously been shown to be influential in the performance of athletes. It has also been noted that high performance coaches are learners by necessity. However, what remains unclear is how coaches' learning influences their engagement in sustainable practice. This study draws on three cohorts of full-time high performance coaches employed in Olympic and professional sports throughout Australia. Semi-structured interviews were conducted face-to-face and were inductively analysed. The results revealed that the coaches were presented with a variety of opportunities to learn, with the most valued sources being 'learning on the job', 'discussions with others' and 'experience as athletes'. These unmediated learning opportunities are critiqued along with other mediated opportunities in relation to notions of sustainability. The dominance of unmediated sources of learning meant that sustainable practice was present but was not assured. Sustainable practice is also discussed in relation to the dominant models of high performance athlete development and the demands of coaching work

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
    • …
    corecore