5,100 research outputs found
Resonance tuning of two-photon absorption microcavities for wavelength-selective pulse monitoring
We show the potential use of a single photodetector for multichannel pulse monitoring. Two-photon absorption in a microcavity structure is used as the nonlinear optical technique for pulse monitoring. Angle tuning of the device allows the resonance to be tuned. For the device studied here that is optimized for 2-ps pulses, a possible tuning range of 55 nm is shown
Optical signal processing via two-photon absorption in a semiconductor microcavity for the next generation of high-speed optical communications network
Due to the introduction of new broadband services, individual line data rates are expected to exceed 100 Gb/s in the near future. To operate at these high speeds, new optical signal processing techniques will have to be developed. This paper will demonstrate that two-photon absorption in a specially designed semiconductor microcavity is an ideal candidate for optical signal processing applications such as autocorrelation, sampling, and demultiplexing in high-speed wavelength-division-multiplexed (WDM) and hybrid WDM/optical time-division-multiplexed networks
Chromatic dispersion monitoring of 80-Gb/s OTDM data signal via two-photon absorption in a semiconductor microcavity
In this letter, a novel method of chromatic dispersion monitoring via two-photon absorption (TPA) is investigated. A specially designed semiconductor microcavity is employed as a TPA detector for monitoring data signals operating at rates up to 80Gb/s. As the microcavity has a wavelength-dependent response, a single device can be used to monitor multiple channels in a multiwavelength optical telecommunication syste
Design and fabrication of highly efficient non-linear optical devices for implementing high-speed optical processing
We present the design and fabrication of micro-cavity semiconductor devices for enhanced Two-Photon-Absorption response, and demonstrate the use of these devices for implementing sensitive autocorrelation measurements on pico-second optical pulses
Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation
We describe a detailed theoretical investigation of two-photon absorption photoconductivity in semiconductor microcavities. We show that high enhancement (by a factor of >10, 000) of the nonlinear response can be obtained as a result of the microcavity effect. We discuss in detail the design and performance (dynamic range, speed) of such a device with the help of the example of an AlGaAs/GaAs microcavity operating at 900 nm. This device shows promise for low-intensity, fast autocorrelation and demultiplexing applications
Inequalities in pediatric avoidable hospitalizations between Aboriginal and non-Aboriginal children in Australia: a population data linkage study
Background:
Australian Aboriginal children experience a disproportionate burden of social and health disadvantage. Avoidable hospitalizations present a potentially modifiable health gap that can be targeted and monitored using population data. This study quantifies inequalities in pediatric avoidable hospitalizations between Australian Aboriginal and non-Aboriginal children.
Methods:
This statewide population-based cohort study included 1 121 440 children born in New South Wales, Australia, between 1 July 2000 and 31 December 2012, including 35 609 Aboriginal children. Using linked hospital data from 1 July 2000 to 31 December 2013, we identified pediatric avoidable, ambulatory care sensitive and non-avoidable hospitalization rates for Aboriginal and non-Aboriginal children. Absolute and relative inequalities between Aboriginal and non-Aboriginal children were measured as rate differences and rate ratios, respectively. Individual-level covariates included age, sex, low birth weight and/or prematurity, and private health insurance/patient status. Area-level covariates included remoteness of residence and area socioeconomic disadvantage.
Results:
There were 365 386 potentially avoidable hospitalizations observed over the study period, most commonly for respiratory and infectious conditions; Aboriginal children were admitted more frequently for all conditions. Avoidable hospitalization rates were 90.1/1000 person-years (95 % CI, 88.9–91.4) in Aboriginal children and 44.9/1000 person-years (44.8–45.1) in non-Aboriginal children (age and sex adjusted rate ratio = 1.7 (1.7–1.7)). Rate differences and rate ratios declined with age from 94/1000 person-years and 1.9, respectively, for children aged <2 years to 5/1000 person-years and 1.8, respectively, for ages 12- < 14 years. Findings were similar for the subset of ambulatory care sensitive hospitalizations, but in contrast, non-avoidable hospitalization rates were almost identical in Aboriginal (10.1/1000 person-years, (9.6–10.5)) and non-Aboriginal children (9.6/1000 person-years (9.6–9.7)).
Conclusions:
We observed substantial inequalities in avoidable hospitalizations between Aboriginal and non-Aboriginal children regardless of where they lived, particularly among young children. Policy measures that reduce inequities in the circumstances in which children grow and develop, and improved access to early intervention in primary care, have potential to narrow this gap
High-sensitivity two-photon absorption microcavity autocorrelator
A GaAs-AlAs microcavity device has been used as a photodetector in an autocorrelator for measuring the temporal pulsewidth of 1.5-/spl mu/m optical pulses. Enhancement of the two-photon absorption photocurrent due to the microcavity structure results in an autocorrelation (average power times peak power) sensitivity of 9.3/spl times/10/sup -4/ (mW)/sup 2/, which represents two orders of magnitude improvement when compared with conventional autocorrelators
Two-photon absorption in microcavities for optical autocorrelation and sampling
We have designed novel semiconductor microcavity structures for the enhancement of the two-photon absorption (TPA) photocurrent. We report a TPA autocorrelation technique for short optical pulses that uses the microcavity structure instead of a second harmonic generation crystal. Knowledge of these characteristics is important for implementation in applications such as optical switching and sampling in optical time division multiplexed (OTDM) communications systems
Distribution and Natural History of Amphibians and Reptiles in Western Nebraska with Ecological Notes on the Herpetiles of Arapaho Prairie
Introduction: The distribution and natural history of amphibians and reptiles have been little studied in the northern states of the great plains. Relative to other vertebrate groups, the herpetofauna of grasslands is depauperate particularly at higher latitudes where temperature becomes a limiting factor to poikilotherms. Nevertheless, certain species of amphibians and reptiles are common in specific habitats and thus form a conspicuous component of the prairie fauna. The purposes of the present study were to document the distributions of herpetiles in a specified region of western Nebraska and to describe general aspects of their natural history. We hope such information will stimulate additiona} work as well as provide a baseline reference for future studies on the herpetofauna of the northern great plains. Previous work on herpetiles in western Nebraska are either in need of updating (e.g. Hudson, 1942) or are anecdotal or not comprehensive (Heyl and Smith, 1957; Gehlbach and Collette, 1959; Iverson, 1975; Lynch, 1978).
Summary: The herpetofauna of the seven county study area in western Nebraska may be characterized in general by a preponderance of organisms exhibiting both wide geographical and wide ecological distributions and tolerances. Species exhibiting little microhabitat specificity and which are found widely throughout the region include the tiger salamander, spadefoot toad, rocky mountain toad, striped chorus frog, lesser earless lizard, fence lizard, racerunner, common racer, bullsnake, red-sided garter snake, plains garter snake, snapping turtle and painted turtle. Those ecologically restricted species that enter the area include the plains leopard frog, common water snake, black-headed snake, yellow mud turtle, Blanding\u27s turtle, and spiny soft-shelled turtle
A novel approach towards two-photon absorption based detectors
Summary: We have demonstrated that the inherent inefficiency of the TPA process in semiconductors can be overcome by incorporating the semiconductor in a microcavity structure. Proof of concept devices with a 0.27μm Ga0.7Al0.3As active region and two Bragg reflectors with the cavity resonance of 890 nm were fabricated. We measured the TPA photocurrent of these devices and have demonstrated a factor of 12000 enhancement over a nonmicrocavity device at 890 nm. Our active length of 0.27 nm is as efficient as 5.4 mm without a microcavity, overcoming the very long detector lengths limiting the use of TPA in practical autocorrelators, optical switches and sampling devices for real telecommunication systems. The effect of the cavity is to enhance the intra-cavity optical intensity, which leads to an increase in the nonlinear response of the active region. We studied, theoretically and experimentally, the impact of the cavity on the temporal response and the sensitivity of the device, which are critical considerations for commercial applications. This cavity design has a 3 pico-second response time and the autocorrelation trace is comparable with the BBO crystal response for an input 1.6 ps pulse. Devices designed for 1550 nm have also been realised and our measurements indicate these two-photon absorption based detectors are potential candidates for optical autocorrelation of short optical pulses, and for optical switching and sampling in optical time division multiplexed (OTDM) communications systems
- …