11 research outputs found
Liger for Next Generation Keck AO: Filter Wheel and Pupil Design
Liger is a next-generation near-infrared imager and integral field
spectrograph (IFS) for the W.M. Keck Observatory designed to take advantage of
the Keck All-Sky Precision Adaptive Optics (KAPA) upgrade. Liger will operate
at spectral resolving powers between R4,000 - 10,000 over a wavelength
range of 0.8-2.4m. Liger takes advantage of a sequential imager and
spectrograph design that allows for simultaneous observations between the two
channels using the same filter wheel and cold pupil stop. We present the design
for the filter wheels and pupil mask and their location and tolerances in the
optical design. The filter mechanism is a multi-wheel design drawing from the
heritage of the current Keck/OSIRIS imager single wheel design. The Liger
multi-wheel configuration is designed to allow future upgrades to the number
and range of filters throughout the life of the instrument. The pupil mechanism
is designed to be similarly upgradeable with the option to add multiple pupil
mask options. A smaller wheel mechanism allows the user to select the desired
pupil mask with open slots being designed in for future upgrade capabilities.
An ideal pupil would match the shape of the image formed of the primary and
would track its rotation. For different pupil shapes without tracking we model
the additional exposure time needed to achieve the same signal to noise of an
ideal pupil and determine that a set of fixed masks of different shapes
provides a mechanically simpler system with little compromise in performance.Comment: 9 pages, 7 figures, 1 tabl
Liger for Next Generation Keck Adaptive Optics: Opto-Mechanical Dewar for Imaging Camera and Slicer
Liger is a next generation adaptive optics (AO) fed integral field
spectrograph (IFS) and imager for the W. M. Keck Observatory. This new
instrument is being designed to take advantage of the upgraded AO system
provided by Keck All-Sky Precision Adaptive-optics (KAPA). Liger will provide
higher spectral resolving power (R4,000-10,000), wider wavelength
coverage (0.8-2.4 m), and larger fields of view than any current
IFS. We present the design and analysis for a custom-made dewar chamber for
characterizing the Liger opto-mechanical system. This dewar chamber is designed
to test and assemble the Liger imaging camera and slicer IFS components while
being adaptable for future experiments. The vacuum chamber will operate below
Torr with a cold shield that will be kept below 90 K. The dewar test
chamber will be mounted to an optical vibration isolation platform and further
isolated from the cryogenic and vacuum systems with bellows. The cold head and
vacuums will be mounted to a custom cart that will also house the electronics
and computer that interface with the experiment. This test chamber will provide
an efficient means of calibrating and characterizing the Liger instrument and
performing future experiments.Comment: 8 pages, 6 figure
Characterizing and Improving the Data Reduction Pipeline for the Keck OSIRIS Integral Field Spectrograph
OSIRIS is a near-infrared (1.0--2.4 m) integral field spectrograph
operating behind the adaptive optics system at Keck Observatory, and is one of
the first lenslet-based integral field spectrographs. Since its commissioning
in 2005, it has been a productive instrument, producing nearly half the laser
guide star adaptive optics (LGS AO) papers on Keck. The complexity of its raw
data format necessitated a custom data reduction pipeline (DRP) delivered with
the instrument in order to iteratively assign flux in overlapping spectra to
the proper spatial and spectral locations in a data cube. Other than bug fixes
and updates required for hardware upgrades, the bulk of the DRP has not been
updated since initial instrument commissioning. We report on the first major
comprehensive characterization of the DRP using on-sky and calibration data. We
also detail improvements to the DRP including characterization of the flux
assignment algorithm; exploration of spatial rippling in the reduced data
cubes; and improvements to several calibration files, including the
rectification matrix, the bad pixel mask, and the wavelength solution. We
present lessons learned from over a decade of OSIRIS data reduction that are
relevant to the next generation of integral field spectrograph hardware and
data reduction software design.Comment: 18 pages, 16 figures; accepted for publication in A
Recommended from our members
Liger for Next Generation Keck AO: Filter Wheel and Pupil Design
Liger is a next-generation near-infrared imager and integral field
spectrograph (IFS) for the W.M. Keck Observatory designed to take advantage of
the Keck All-Sky Precision Adaptive Optics (KAPA) upgrade. Liger will operate
at spectral resolving powers between R4,000 - 10,000 over a wavelength
range of 0.8-2.4m. Liger takes advantage of a sequential imager and
spectrograph design that allows for simultaneous observations between the two
channels using the same filter wheel and cold pupil stop. We present the design
for the filter wheels and pupil mask and their location and tolerances in the
optical design. The filter mechanism is a multi-wheel design drawing from the
heritage of the current Keck/OSIRIS imager single wheel design. The Liger
multi-wheel configuration is designed to allow future upgrades to the number
and range of filters throughout the life of the instrument. The pupil mechanism
is designed to be similarly upgradeable with the option to add multiple pupil
mask options. A smaller wheel mechanism allows the user to select the desired
pupil mask with open slots being designed in for future upgrade capabilities.
An ideal pupil would match the shape of the image formed of the primary and
would track its rotation. For different pupil shapes without tracking we model
the additional exposure time needed to achieve the same signal to noise of an
ideal pupil and determine that a set of fixed masks of different shapes
provides a mechanically simpler system with little compromise in performance
NOVA V2362 CYGNI (NOVA CYGNI 2006):SPITZER,SWIFT, AND GROUND-BASED SPECTRAL EVOLUTION
Nova V2362 Cygni has undergone a number of very unusual changes. Ground-based spectroscopy initially revealed a normal sequence of events: the object faded and its near-infrared emission lines gradually shifted to higher excitation conditions until about day 100 when the optical fading reversed and the object slowly brightened. This was accompanied by a rise in the Swift X-ray telescope flux and a sudden shift in excitation of the visible and IR spectrum back to low levels. The new lower excitation spectrum revealed broad line widths and many P-Cygni profiles, all indicative of the ejection of a second shell. Eventually, dust formed, the X-ray brightness apparently unaffected by dust formation-peaked and then declined, and the object faded at all wavelengths. The Spitzer dust spectra revealed a number of solid-state emission features that, at this time, are not identified
Recommended from our members
Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial.
Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037
Recommended from our members
Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial.
Acknowledgements: We thank all the participants in this trial; the members of the safety monitoring committee (K. Talaat, J. Treanor, G. Paulsen and D. Stablein), who provided thoughtful discussions resulting in the early trial design; and staff members at Moderna, Pfizer and Sanofi–GSK for their collaboration, scientific input and sharing of documents needed to implement the trial. The COVAIL trial has been funded in part with federal funds from the NIAID and the National Cancer Institute, NIH, under contract HHSN261200800001E 75N910D00024, task order no. 75N91022F00007, and in part by the Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under Government Contract no. 75A50122C00008 with Monogram Biosciences, LabCorp. This work was also supported in part with federal funds from the NIAID, NIH, under contract no. 75N93021C00012, and by the Infectious Diseases Clinical Research Consortium (IDCRC) through the NIAID, under award no. UM1AI148684. D.J.S., A.N., S.H.W. and S.T. were supported by the NIH—NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract no. 75N93021C00014 as part of the SAVE program. D.C.M. and A.E. were supported by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVICs) contract no. 75N93019C00050. Testing of neutralizing antibody titers by Monogram Biosciences, LabCorp has been funded in part with federal funds from the Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, under contract no. 75A50122C00008. Testing for anti-N-specific antibody was conducted by Cerba Research under contract no. 75N93021D00021. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the NIH—NIAID.Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037