4 research outputs found

    BMI at Age 8 Years Is Influenced by the Type 2 Diabetes Susceptibility Genes HHEX-IDE and CDKAL1

    Get PDF
    OBJECTIVE: To determine whether HHEX-IDE and CDKAL1 genes, which are associated with birth weight and susceptibility to type 2 diabetes, continue to influence growth during childhood. RESEARCH DESIGN AND METHODS: BMI, weight, and height at age 8 years expressed as age- and sex-corrected standard deviation scores (SDS) against national reference data and single-nucleotide polymorphism genotyping of HHEX-IDE and CDKAL1 loci were analyzed in 646 prospectively followed children in the German BABYDIAB cohort. All children were singleton full-term births; 386 had mothers with type 1 diabetes, and 260 had fathers with type 1 diabetes and a nondiabetic mother. RESULTS: Type 2 diabetes risk alleles at the HHEX-IDE locus were associated with reduced BMI-SDS at age 8 years (0.17 SDS per allele; P = 0.004). After stratification for birth weight, both HHEX-IDE and CDKAL1 risk alleles were associated with reduced BMI-SDS (0.45 SDS, P = 0.0002; 0.52 SDS, P = 0.0001) and weight-SDS (0.22 SDS, P = 0.04; 0.56 SDS, P = 0.0002) in children born large for gestational age (>90th percentile) but not children born small or appropriate for gestational age. Within children born large for gestational age, BMI and weight decreased with each additional type 2 diabetes risk allele ( approximately -2 kg per allele; >8 kg overall). Findings were consistent in children of mothers with type 1 diabetes (P < 0.0001) and children of nondiabetic mothers (P = 0.008). CONCLUSIONS: The type 2 diabetes susceptibility alleles at HHEX-IDE and CDKAL1 loci are associated with low BMI at age 8 years in children who were born large for gestational age

    A Comparison of Rule-based Analysis with Regression Methods in Understanding the Risk Factors for Study Withdrawal in a Pediatric Study

    No full text
    Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions

    The NMDA receptor as a target for cognitive enhancement

    No full text
    corecore