12 research outputs found

    Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

    Get PDF
    37 pages, 15 figures, revised version, accepted by JINSTALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurements, and the reconstructed tracks from cosmic rays and from proton-proton collisions. The main track-based alignment method uses the Millepede global approach. An iterative local method was developed and used as well. We present the results obtained for the ITS alignment using about 10^5 charged tracks from cosmic rays that have been collected during summer 2008, with the ALICE solenoidal magnet switched off.Peer reviewe

    Operation of the Multigap Resistive Plate Chamber using a gas mixture free of flammable components

    No full text
    We have investigated the operation of the multigap resistive plate chamber (MRPC) for the ALICE-TOF system with a gas mixture free of flammable components. Two different gas mixtures, with and without iso-C4H10 have been used to measure the performance of the MRPC. The efficiency, time resolution, total charge, and the fast to total charge ratio have been found to be comparabl

    Magnetic Field and Radiation Tests of a Programmable Delay Line

    No full text
    Programmable Delay Lines (PDLs) are widely used in trigger systems. We performed tests under radiation and magnetic field for the chip 3D3418-0.25, to be used in the ALICE-TOF trigger system. The tests showed that this chip can comfortably operate in a 0.6 T magnetic field and tolerate a dose larger than 446 G

    Latest results on the performance of the multigap resistive plate chamber used for the ALICE TOF

    No full text
    For the identification of particles in the momentum range 0.5-2.5GeV/c, the ALICE experiment uses a Time Of Flight array consisting of Multigap Resistive Plate Chambers (MRPC) in the form of long strips. The design of the detector elements is as follows : double stack MRPCs with glass resistive plates and 5 gas gaps of 250 mum per stack. The latest results on the performance of these MRPCs are presented. Typical values of time resolution a are better than 50 ps, with an efficiency of 99.9% and a long, more than 1.5 kV, streamer-free plateau

    Space charge limited avalanche growth in multigap resistive plate chambers

    No full text
    The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 mu m. There has been an intense R&D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R&D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 mu m gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 mu m gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth

    Mitochondrial channels: ion fluxes and more.

    No full text
    The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information

    The high energy muon spectrum in Extensive Air Showers: first data from LVD and EAS-TOP at Gran Sasso

    No full text
    We present evidence for a dependence of the average deep underground muon energies on shower size in the coincident EAS-TOP and LVD data at the Gran Sasso laboratories. The measured relation agrees with a mixed chemical composition of the cosmic ray primary spectrum at energies around 10(15) eV. (C) 1998 Elsevier Science B.V.9318519
    corecore