347 research outputs found
Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations
L\"uscher's method is routinely used to determine meson-meson, meson-baryon
and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from
Lattice QCD calculations - presently at unphysical light-quark masses. In this
work we review the formalism and develop the requisite expressions to extract
phase-shifts describing meson-meson scattering in partial-waves with
angular-momentum l<=6 and l=9. The implications of the underlying cubic
symmetry, and strategies for extracting the phase-shifts from Lattice QCD
calculations, are presented, along with a discussion of the signal-to-noise
problem that afflicts the higher partial-waves.Comment: 79 pages, 41 figure
Evaluating and Prioritizing Circular Supply Chain Alternatives in the Energy Context with a Holistic Multi-Indicator Decision Support System
Transitioning to a circular economy is crucial for sustainable energy development; yet, current energy supply chains lack comprehensive assessment tools. This study introduces the Holistic Multi-Indicator Decision Support System (HMI_DSS), an innovative tool grounded in life cycle thinking and advanced multi-criteria decision-making methodologies, including Entropy and PROMETHEE II. The HMI_DSS quantifies and assesses sustainability and circularity in energy systems by employing 49 indicators, with a focus on energy efficiency and greenhouse gas emissions. A case study on the rice straw energy supply chain for biogas production illustrates the tool’s effectiveness, comparing a baseline scenario to an alternative. The results show that the global warming potential (GWP) of the baseline is 122 gCO2eq/kWh, while the alternative is 116 gCO2eq/kWh. However, the baseline scenario has lower energy consumption (1.72 × 107 MJ annually) than the alternative (1.98 × 107 MJ). Overall, the alternative outperforms the baseline in terms of sustainability and circularity. The HMI_DSS offers a flexible and robust framework for evaluating trade-offs in energy systems, providing valuable insights for energy companies and researchers in adopting circular economy principles to achieve sustainable development
Sustainability and circularity assessment of biomass-based energy supply chain
Climate change and other environmental consequences of socio-economic activities require a more sustainable and circular growth. At the same time, the limitation of the earth resource demands industries to improve resource efficiency and increase the rate of recycling of materials. There are several sustainable and circular alternatives that the industries may adopt. However, the question is that among these alternatives, which one should be selected for implementation for the highest sustainable and circular benefits. This study introduces a novel tool for assessing the sustainability and circularity of biomass-based energy supply chains, integrating multi-criteria decision-making methods with life cycle thinking approach. It evaluates five alternatives using a sustainability and circularity indicators, offering new insights into the deloyment of circular business models at companies in biomass-based energy supply chain. The tool is also applied to a specific rice straw supply chain in Italy, to assess the sustainability and circularity of five alternatives and outrank them. The results indicated that not all the alternatives are better in terms of supporting sustainable development and circular economy, compared to the baseline business model. In this supply chain, the extended lifetime for digestate from the aerobic digestion plant is the most ‘sustainable and circular’ alternative, while the capture of carbon dioxide from the same plant and its use for microalgae cultivation is the least ‘sustainable and circular’ alternative. A sensitivity analysis was conducted on different weighting sets during the assessment. It indicated that the priority of the decision makers can slightly change the outrank of the alternatives and the magnitude of the outranks
Enhancing Optical Up-Conversion Through Electrodynamic Coupling with Ancillary Chromophores
In lanthanide-based optical materials, control over the relevant operating characteristics–for example transmission wavelength, phase and quantum efficiency–is generally achieved through the modification of parameters such as dopant/host combination, chromophore concentration and lattice structure. An alternative avenue for the control of optical response is through the introduction of secondary, codoped chromophores. Here, such secondary centers act as mediators, commonly bridging the transfer of energy between primary absorbers of externally sourced optical input and other sites of frequency-converted emission. Utilizing theoretical models based on experimentally feasible, three-dimensional crystal lattice structures; a fully quantized theoretical framework provides insights into the locally modified mechanisms that can be implemented within such systems. This leads to a discussion of how such effects might be deployed to either enhance, or potentially diminish, the efficiency of frequency up-conversion
Life Cycle Environmental Impacts and Health Effects of Protein-Rich Food as Meat Alternatives: A Review
The food sector is responsible for a considerable impact on the environment in most environmental contexts: the food supply chain causes greenhouse gas emissions, water consumption, reduction in cultivable land, and other environmental impacts. Thus, a change in food supply is required to reduce the environmental impacts caused by the food supply chain and to meet the increasing demand for sufficient and qualitative nutrition. Large herds of livestock are inappropriate to achieve these goals due to the relevant impact of meat supply chain on the environment, e.g., the land used to grow feed for animals is eight times more than that for human nutrition. The search for meat alternatives, especially for the intake of critical nutrients such as protein, is a consequent step. In the above context, this paper summarizes the health aspects of protein-rich food alternatives to meat and carries out a literature review on the life-cycle environmental impacts of this alternative food
Integrated hybrid multi-regional input-output for assessing life cycle air emissions of the Italian power system
The air emissions of the Italian power system, as well as national emissions between 2010 and 2017 and projections to 2040, have been assessed from a lifecycle perspective, using an integrated hybrid two-region input-output model of Italy versus the rest of the world. The Italian economy is divided into 42 sectors, including electricity, which is further disaggregated into seven technologies. Detailed electricity sector data, from Istat, are fed into the EXIOBASE input-output database. NAMEA tables represent overall air emissions, while the Ecoinvent database is used for the electricity sector. Electricity transition scenarios from Terna and Snam have been integrated into input-output and air emission databases. Demand and emissions were tracked within the electricity sector over medium-term, and the findings showed a sharp decrease between 2017 and 2025, from 97.5 MtCO2 to 32.6 MtCO2. By 2040, air emissions from the electricity sector are expected to grow gradually, compared to those of 2030, from 22.2 MtCO2 to 25.9 MtCO2, suggesting that the demand between 2030 and 2040 grows faster than the decarbonization effort during the same period. There is an overall, gradual downtrend between 2010 and 2040, with all air emission categories declining by half from both production and consumption-based perspectives in this period
Epigenetic polypharmacology: from combination therapy to multitargeted drugs
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed
Associations between Ileal Juice Bile Acids and Colorectal Advanced Adenoma
Background: There is an urgent need to identify biomarkers for advanced adenoma, an important precursor of colorectal cancer (CRC). We aimed to determine alterations in ileal juice bile acids associated with colorectal advanced adenoma. Methods: We quantified a comprehensive panel of primary and secondary bile acids and their conjugates using an ultraperformance liquid chromatography triple-quadrupole mass spectrometric assay in ileal juice collected at colonoscopy from 46 study subjects (i.e., 14 biopsy-confirmed advanced adenomas and 32 controls free of adenoma or cancer). Using analysis of covariance (ANCOVA), we examined the differences in bile acid concentrations by disease status, adjusting for age, sex, body mass index, smoking status and type 2 diabetes. Results: The concentrations of hyodeoxycholic acid (HCA) species in ileal juice of the advanced adenoma patients (geometric mean = 4501.9 nM) were significantly higher than those of controls (geometric mean = 1292.3 nM, p = 0.001). The relative abundance of ursodeoxycholic acid (UDCA) in total bile acids was significantly reduced in cases than controls (0.73% in cases vs. 1.33% in controls; p = 0.046). No significant difference between cases and controls was observed for concentrations of total or specific primary bile acids (i.e., cholic acid (CA), chenodeoxycholic acid (CDCA) and their glycine- and taurine-conjugates) and total and specific major secondary bile acids (i.e., deoxycholic acid and lithocholic acid). Conclusions: Colorectal advanced adenoma was associated with altered bile acids in ileal juice. The HCA species may promote the development of colorectal advanced adenoma, whereas gut microbiota responsible for the conversion of CDCA to UDCA may protect against it. Our findings have important implications for the use of bile acids as biomarkers in early detection of colorectal cancer
- …
