15 research outputs found

    Comparison of extended reality and conventional methods of basic life support training: protocol for a multinational, pragmatic, noninferiority, randomised clinical trial (XR BLS trial)

    Get PDF
    Abstract Background Conventional cardiopulmonary resuscitation (CPR) training for the general public involves the use of a manikin and a training video, which has limitations related to a lack of realism and immersion. To overcome these limitations, virtual reality and extended reality technologies are being used in the field of medical education. The aim of this study is to explore the efficacy and safety of extended reality (XR)-based basic life support (BLS) training. Methods This study is a prospective, multinational, multicentre, randomised controlled study. Four institutions in 4 countries will participate in the study. A total of 154 participants will be randomly assigned to either the XR group or the conventional group stratified by institution and sex (1:1 ratio). Each participant who is allocated to either group will be sent to a separate room to receive training with an XR BLS module or conventional CPR training video. All participants will perform a test on a CPR manikin after the training. The primary outcome will be mean compression depth. The secondary outcome will be overall BLS performance, including compression rate, correct hand position, compression, and full release and hands-off time. Discussion Using virtual reality (VR) to establish a virtual educational environment can give trainees a sense of realism. In the XR environment, which combines the virtual world with the real world, trainees can more effectively learn various skills. This trial will provide evidence of the usefulness of XR in CPR education. Trial registration ClinicalTrials.gov NCT04736888. Registered on 29 January 202

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Computing the Radiant Energy Budget of Enceladus

    No full text
    One of the most important findings from the 20-year (1997-2017) Cassini mission is the discovery of jet plumes on Enceladus (e.g., a small satellite of Saturn with a size ~ 500 km). These jet plumes (~ a few hundred kilometers in height) are driven by liquid water/water ice and have led Enceladus to become one of the best candidates in finding a place suitable for past or present life in our solar system. Here we seek to better understand the geological system of Enceladus by analyzing its radiant energy budget with Cassiniñ€ℱs observations. The radiant energy budget, determined by the emitted thermal energy and absorbed solar energy, can be used to estimate the internal heat which plays a critical role in driving the jet plumes. The thermal spectra recorded by one infrared instrument (i.e., CIRS) aboard the Cassini spacecraft are used to measure the emitted thermal energy. Data from the visible and near-infrared instruments (i.e., ISS and VIMS) on Cassini are used to measure the absorbed solar energy. Based on the measurements of the emitted thermal energy and the absorbed solar energy, we can determine Enceladusñ€ℱ radiant energy budget and the related internal heat. We have achieved some promising results (e.g., the solar flux and the full-disk albedo of Enceladus at some wavelengths). We will finish the measurements of Enceladusñ€ℱ radiant energy budget, which will be used to improve models of Enceladusñ€ℱ thermal structure and explain the incredible jet plumes.Physics, Department ofHonors Colleg

    The Bolometric Bond Albedo of Enceladus

    No full text
    The bolometric Bond albedo is a fundamental parameter of planets and moons. Here, combined observations from the Cassini spacecraft and the Hubble Space Telescope are used to determine the bolometric Bond albedo of Enceladus. We provide the full-disk reflectance of Enceladus across all phase angles (0° -180°) from 150 nm to 5131 nm, a spectral range that accounts for nearly all incoming solar power. Considering the distribution of the monochromatic Bond albedo over wavelength, we find a value of 0.76 ± 0.03 for Enceladus' bolometric Bond albedo. The corresponding optical characteristics (e.g., geometric albedo and phase function), which are closely related to Enceladus' surface properties, are also investigated. The wavelength-dependent nature of Enceladus' Bond albedo suggests that the bolometric Bond albedos of other icy moons, if they are mainly determined by the visible observations only, should be carefully considered. Our new measurements of bolometric Bond albedo can be used to better determine the radiant energy budget of Enceladus and further constrain the internal heat flow, a critical driving force for the water plumes on Enceladus

    N-glycolylneuraminic acid binding of avian and equine H7 influenza A viruses

    Get PDF
    Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals, including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAV that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that the A135E mutation is key for binding a2,3-linked NeuGc but does not abolish NeuAc binding. The additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This analysis revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after the introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. IMPORTANCE Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these “keys” (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority bind NeuGc. NeuGc is present in species like horses, pigs, and mice but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc

    N-Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses

    No full text
    Influenza A viruses (IAV) initiate infection by binding to glycans with terminal sialic acids on the cell surface. Hosts of IAV variably express two major forms of sialic acid, N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc). NeuGc is produced in most mammals, including horses and pigs, but is absent in humans, ferrets, and birds. The only known naturally occurring IAV that exclusively bind NeuGc are extinct highly pathogenic equine H7N7 viruses. We determined the crystal structure of a representative equine H7 hemagglutinin (HA) in complex with NeuGc and observed high similarity in the receptor-binding domain with an avian H7 HA. To determine the molecular basis for NeuAc and NeuGc specificity, we performed systematic mutational analyses, based on the structural insights, on two distant avian H7 HAs and an H15 HA. We found that the A135E mutation is key for binding a2,3-linked NeuGc but does not abolish NeuAc binding. The additional mutations S128T, I130V, T189A, and K193R converted the specificity from NeuAc to NeuGc. We investigated the residues at positions 128, 130, 135, 189, and 193 in a phylogenetic analysis of avian and equine H7 HAs. This analysis revealed a clear distinction between equine and avian residues. The highest variability was observed at key position 135, of which only the equine glutamic acid led to NeuGc binding. These results demonstrate that genetically distinct H7 and H15 HAs can be switched from NeuAc to NeuGc binding and vice versa after the introduction of several mutations, providing insights into the adaptation of H7 viruses to NeuGc receptors. IMPORTANCE Influenza A viruses cause millions of cases of severe illness and deaths annually. To initiate infection and replicate, the virus first needs to bind to a structure on the cell surface, like a key fitting in a lock. For influenza A viruses, these “keys” (receptors) on the cell surface are chains of sugar molecules (glycans). The terminal sugar on these glycans is often either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc). Most influenza A viruses bind NeuAc, but a small minority bind NeuGc. NeuGc is present in species like horses, pigs, and mice but not in humans, ferrets, and birds. Here, we investigated the molecular determinants of NeuGc specificity and the origin of viruses that bind NeuGc
    corecore