2,127 research outputs found

    Fractional Langevin equation

    Full text link
    We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both sub- and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-law behavior. Here we show that their lowest moments are actually all identical, except the second moment of the velocity. This provides a simple criterion which enables to distinguish these two non-Markovian processes.Comment: 4 page

    Interleukin-3Rα+ Myeloid Dendritic Cells and Mast Cells Develop Simultaneously from Different Bone Marrow Precursors in Cultures with Interleukin-3

    Get PDF
    The distinct developmental routes of dendritic cells and mast cells from murine bone marrow cultures with interleukin-3 are unclear. We found that short-term bone marrow cultures with interleukin-3 after 8–10 d consist of about 10%–30% dendritic cells and 70%–90% mast cell precursors, and only after 4–6 wk do homogeneous populations of mast cells emerge. Phenotypical and functional analysis of interleukin-3/dendritic cells revealed a high similarity with myeloid dendritic cells generated with granulocyte-macrophage colony stimulating factor in the expression of myeloid dendritic cell markers (CD11c+ B220– CD8α– CD11b+), major histocompatibility complex II and costimulatory molecules, endocytosis, maturation potential, interleukin-12 production, and T cell priming. Interleukin-3/dendritic cells expressed higher levels of interleukin-3 receptor, however. To dissect the interleukin-3/dendritic cell and mast cell development, we sorted fresh bone marrow cells into six subsets by the antibodies ER-MP12 (CD31) and ER-MP20 (Ly-6C). Both interelukin-3/dendritic cells and granulocyte-macrophage colony stimulating factor/dendritic cells develop from the same bone marrow populations, including the ER-MP12neg, ER-MP20high bone marrow monocytes. In contrast, mast cells only developed from ER-MP12int+high, ER-MP20neg bone marrow cell subsets, indicating that different precursors exist for interleukin-3/dendritic cells and mast cells. Established mast cell cultures could not be converted to dendritic cells or stimulated to express major histocompatibility complex II molecules in vitro or home to lymph node T cell areas in vivo. In summary, we show that dendritic cells generated from bone marrow precursors with interleukin-3 are clearly myeloid and develop via a different pathway compared to bone marrow mast cells

    Universal fluctuations in subdiffusive transport

    Get PDF
    Subdiffusive transport in tilted washboard potentials is studied within the fractional Fokker-Planck equation approach, using the associated continuous time random walk (CTRW) framework. The scaled subvelocity is shown to obey a universal law, assuming the form of a stationary Levy-stable distribution. The latter is defined by the index of subdiffusion alpha and the mean subvelocity only, but interestingly depends neither on the bias strength nor on the specific form of the potential. These scaled, universal subvelocity fluctuations emerge due to the weak ergodicity breaking and are vanishing in the limit of normal diffusion. The results of the analytical heuristic theory are corroborated by Monte Carlo simulations of the underlying CTRW

    Solar-Type Post-T Tauri Stars in the Nearest OB Subgroups

    Full text link
    I discuss results from the recent spectroscopic survey for solar-type pre-MS stars in the Lower Centaurus-Crux (LCC) and Upper Centaurus-Lupus (UCL) OB subgroups by Mamajek, Meyer, & Liebert (2002, AJ, 124, 1670). LCC and UCL are subgroups of the Sco-Cen OB association, and the two nearest OB subgroups to the Sun. In the entire survey of 110 pre-main sequence stars, there exists only one Classical T Tauri star (PDS 66), implying that only ~1% of ~1 Msun stars are still accreting at age 13±\pm7 (1σ\sigma) Myr. Accounting for observational errors, the HRD placement of the pre-MS stars is consistent with the bulk of star-formation taking place within 5-10 Myr. In this contribution, I estimate conservative upper limits to the intrinsic velocity dispersions of the post-T Tauri stars in the LCC and UCL subgroups (<1.6 km/s and <2.2 km/s, respectively; 95% CL) using Monte-Carlo simulations of Tycho-2 proper motions for candidate subgroup members. I also demonstrate that a new OB subgroup recently proposed to exist in Chamaeleon probably does not.Comment: 8 pages, 2 figures, to appear in proceedings for "Open Issues in Local Star Formation and Early Stellar Evolution", eds. J. Gregorio-Hetem & J. Lepine. Minor edits (5/30/03

    Noise-assisted classical adiabatic pumping in a symmetric periodic potential

    Full text link
    We consider a classical overdamped Brownian particle moving in a symmetric periodic potential. We show that a net particle flow can be produced by adiabatically changing two external periodic potentials with a spatial and a temporal phase difference. The classical pumped current is found to be independent of the friction and to vanish both in the limit of low and high temperature. Below a critical temperature, adiabatic pumping appears to be more efficient than transport due to a constant external force.Comment: six pages, 3 figure

    Neutron star properties in the quark-meson coupling model

    Get PDF
    The effects of internal quark structure of baryons on the composition and structure of neutron star matter with hyperons are investigated in the quark-meson coupling (QMC) model. The QMC model is based on mean-field description of nonoverlapping spherical bags bound by self-consistent exchange of scalar and vector mesons. The predictions of this model are compared with quantum hadrodynamic (QHD) model calibrated to reproduce identical nuclear matter saturation properties. By employing a density dependent bag constant through direct coupling to the scalar field, the QMC model is found to exhibit identical properties as QHD near saturation density. Furthermore, this modified QMC model provides well-behaved and continuous solutions at high densities relevant to the core of neutron stars. Two additional strange mesons are introduced which couple only to the strange quark in the QMC model and to the hyperons in the QHD model. The constitution and structure of stars with hyperons in the QMC and QHD models reveal interesting differences. This suggests the importance of quark structure effects in the baryons at high densities.Comment: 28 pages, 10 figures, to appear in Physical Review

    Weak Localization Effect in Superconductors by Radiation Damage

    Get PDF
    Large reductions of the superconducting transition temperature TcT_{c} and the accompanying loss of the thermal electrical resistivity (electron-phonon interaction) due to radiation damage have been observed for several A15 compounds, Chevrel phase and Ternary superconductors, and NbSe2\rm{NbSe_{2}} in the high fluence regime. We examine these behaviors based on the recent theory of weak localization effect in superconductors. We find a good fitting to the experimental data. In particular, weak localization correction to the phonon-mediated interaction is derived from the density correlation function. It is shown that weak localization has a strong influence on both the phonon-mediated interaction and the electron-phonon interaction, which leads to the universal correlation of TcT_{c} and resistance ratio.Comment: 16 pages plus 3 figures, revtex, 76 references, For more information, Plesse see http://www.fen.bilkent.edu.tr/~yjki

    Synthesis, Structure and Reactivity of a Mononuclear N,N,O-Bound Fe(II) α-Keto-Acid Complex

    Get PDF
    A bulky, tridentate phenolate ligand (ImPh2NNOtBu) was used to synthesise the first example of a mononuclear, facial, N,N,O-bound iron(II) benzoylformate complex, [Fe(ImPh2NNOtBu)(BF)] (2). The X-ray crystal structure of 2 reveals that the iron centre is pentacoordinate (τ=0.5), with a vacant site located cis to the bidentate BF ligand. The Mössbauer parameters of 2 are consistent with high-spin iron(II), and are very close to those reported for α-ketoglutarate-bound non-heme iron enzyme active sites. According to NMR and UV-vis spectroscopies, the structural integrity of 2 is retained in both coordinating and non-coordinating solvents. Cyclic voltammetry studies show that the iron centre has a very low oxidation potential and is more prone to electrochemical oxidation than the redox-active phenolate ligand. Complex 2 reacts with NO to form a S=3/2 {FeNO}7 adduct in which NO binds directly to the iron centre, according to EPR, UV-vis, IR spectroscopies and DFT analysis. Upon O2 exposure, 2 undergoes oxidative decarboxylation to form a diiron(III) benzoate complex, [Fe2(ImPh2NNOtBu)2(μ2-OBz)(μ2-OH)2]+ (3). A small amount of hydroxylated ligand was also observed by ESI-MS, hinting at the formation of a high-valent iron(IV)-oxo intermediate. Initial reactivity studies show that 2 is capable of oxygen atom transfer reactivity with O2, converting methyl(p-tolyl)sulfide to sulfoxide
    corecore