116 research outputs found

    Validity of Landauer's principle in the quantum regime

    Full text link
    We demonstrate the validity of Landauer's erasure principle in the strong coupling quantum regime by treating the system-reservoir interaction in a consistent way. We show that the initial coupling to the reservoir modifies both energy and entropy of the system and provide explicit expressions for the latter in the case of a damped quantum harmonic oscillator. These contributions are related to the Hamiltonian of mean force and dominate in the strong damping limit. They need therefore to be fully taken into account in any low-temperature thermodynamic analysis of quantum systems.Comment: 4 pages, 2 figure

    Uncertainty in water transit time estimation with StorAge Selection functions and tracer data interpolation

    Get PDF
    Transit time distributions (TTDs) of streamflow are useful descriptors for understanding flow and solute transport in catchments. Catchment-scale TTDs can be modeled using tracer data (e.g. oxygen isotopes, such as δ18O) in inflow and outflows by employing StorAge Selection (SAS) functions. However, tracer data are often sparse in space and time, so they need to be interpolated to increase their spatiotemporal resolution. Moreover, SAS functions can be parameterized with different forms, but there is no general agreement on which one should be used. Both of these aspects induce uncertainty in the simulated TTDs, and the individual uncertainty sources as well as their combined effect have not been fully investigated. This study provides a comprehensive analysis of the TTD uncertainty resulting from 12 model setups obtained by combining different interpolation schemes for δ18O in precipitation and distinct SAS functions. For each model setup, we found behavioral solutions with satisfactory model performance for in-stream δ18O (KGEĝ€¯>ĝ€¯0.55, where KGE refers to the Kling-Gupta efficiency). Differences in KGE values were statistically significant, thereby showing the relevance of the chosen setup for simulating TTDs. We found a large uncertainty in the simulated TTDs, represented by a large range of variability in the 95ĝ€¯% confidence interval of the median transit time, varying at the most by between 259 and 1009ĝ€¯d across all tested setups. Uncertainty in TTDs was mainly associated with the temporal interpolation of δ18O in precipitation, the choice between time-variant and time-invariant SAS functions, flow conditions, and the use of nonspatially interpolated δ18O in precipitation. We discuss the implications of these results for the SAS framework, uncertainty characterization in TTD-based models, and the influence of the uncertainty for water quality and quantity studies

    The efficient long-term inhibition of forsterite dissolution by common soil bacteria and fungi at earth surface conditions

    Get PDF
    San Carlos forsterite was dissolved in initially pure H2O in a batch reactor in contact with the atmosphere for five years. The reactive fluid aqueous pH remained relatively stable at pH 6.7 throughout the experiment. Aqueous Mg concentration maximized after approximately two years time at 3x10-5 mol/kg, whereas aqueous Si concentrations increased continuously with time, reaching 2x10-5 mol/kg after 5 years. Element release rates closely matched those determined on this same forsterite sample during short-term abiotic open system experiments for the first 10 days, then slowed substantially such that the Mg and Si release rates are approximately an order of magnitude slower than that calculated from the short-term abiotic experiments. Post-experiment analysis reveals that secondary hematite, a substantial biotic community, and minor amorphous silica formed on the dissolving forsterite during the experiment. The biotic community included bacteria, dominated by Rhizobiales (Alphaproteobacteria), and fungi, dominated by Trichocomaceae, that grew in a carbon and nutrient-limited media on the dissolving forsterite. The Mg isotope composition of the reactive fluid was near constant after 2 years but 0.25‰ heavier in δ26Mg than the dissolving forsterite. Together these results suggest long-term forsterite dissolution in natural Earth surface systems maybe substantially slower that estimated from short-term abiotic experiments due to the growth of biotic communities on their surfaces

    Towards Application of StorAge Selection Functions in Large-Scale Catchments with Heterogeneous Travel Times and Subsurface Reactivity

    Get PDF
    StorAge Selection (SAS) functions describe how a catchment selectively removes water and solute of different ages via discharge, thus controlling transit time distributions (TTDs) and solute composition of discharge. Previous studies have successfully applied SAS functions in a spatially lumped approach to capture catchment-scale transport phenomena of (non-)conservative solutes. The lumped approach assumes that water and solutes within a water parcel of a specific age are well-mixed. While this assumption does not cause any changes in the age of water, the spatial heterogeneity of solute concentrations within this water parcel is lost. In addition, in large catchments, headwater sub-catchments and lowland sub-catchments could behave in different ways, e.g., the transit times (TTs) and reaction rates between headwater and lowland sub-catchment could be of different magnitudes. This, in turn, might not be sufficiently represented in a lumped approach of SAS functions. In this study, we applied the mHM-SAS model (Nguyen et al., 2020) with a semi-distributed approach of SAS functions. The nested mesoscale catchment (Selke catchment, Germany) with heterogeneous land use management practices, TTs, and subsurface reactivity was used as a case study. In addition to spatial variability, a functional relationship between the parameters of the SAS functions and storage dynamics was introduced to capture temporal dynamics of the selection preference for discharge. High frequency instream nitrate data were used to validate the proposed approach. Results show that the proposed approach can well represent nitrate export at both sub-catchment and catchment levels. The model reveals that catchment nitrate export is controlled by (1) the headwater sub-catchment with fast TTs and a high denitrification rate, and (2) the lowland sub-catchment with longer TTs and a low denitrification rate. In general, the proposed approach serves as a promising tool for understanding the interplay of transport and reaction times between different sub-catchments, which controls nitrate export in a mesoscale heterogeneous catchment

    QUADICA: Water quality, discharge and catchment attributes for large-sample studies in Germany

    Get PDF
    Environmental data are the key to define and address water quality and quantity challenges at catchment scale. Here, we present the first large-sample water quality data set for 1386 German catchments covering a large range of hydroclimatic, topographic, geologic, land use and anthropogenic settings. QUADICA (water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany) combines water quality with water quantity data, meteorological and nutrient forcing data, and catchment attributes. The data set comprises time series of riverine macronutrient concentrations (species of nitrogen, phosphorus and organic carbon) and diffuse nitrogen forcing data at catchment scale (nitrogen surplus, atmospheric deposition and fixation). Time series are generally aggregated to an annual basis; however, for 140 stations with long-term water quality and quantity data (more than 20 years), we additionally present monthly median discharge and nutrient concentrations, flow-normalized concentrations and corresponding mean fluxes as outputs from weighted regressions on time, discharge, and season (WRTDS). The catchment attributes include catchment nutrient inputs from point and diffuse sources and characteristics from topography, climate, land cover, lithology and soils. This comprehensive, freely available data collection can facilitate large-sample data-driven water quality assessments at catchment scale as well as mechanistic modeling studies

    QUADICA: A large-sample data set of water quality, discharge and catchment attributes for Germany

    Get PDF
    Environmental data are critical for understanding and managing ecosystems, including mitigation of degraded water quality. Therefore, we provide the first large-sample water quality data set of riverine water quality combined with water quantity, meteorological and nutrient forcing data, and catchment attributes for Germany in a preprocessed and structured form. The QUADICA data set (water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany) covers 1386 German and transboundary catchments with a large range of hydroclimatic, topographic, geologic, land use and anthropogenic settings. The data set comprises time series of riverine macronutrient concentrations (species of nitrogen, phosphorus and organic carbon), discharge, meteorological and diffuse nitrogen forcing data (nitrogen surplus, atmospheric deposition and fixation). The time series are generally aggregated to an annual basis; however, for 140 stations with long-term water quality and quantity data (more than 20 years), we additionally provide monthly median discharge and nutrient concentrations, flow-normalized concentrations and corresponding mean fluxes as outputs from weighted regressions on time, discharge, and season (WRTDS). The catchment attributes include catchment nutrient inputs from point and diffuse sources and characteristics from topography, hydroclimate, land cover, lithology and soils. QUADICA is a comprehensive, freely available, ready-to-use data set that facilitates large-sample data-driven water quality assessments at catchment scale as well as mechanistic modeling studies. We hope to stimulate the hydrological and water quality communities to provide similar data sets to create novel research opportunities, increase our understanding of catchment functioning, and ultimately improve water quality management

    HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists

    Get PDF
    Media such as television, newspapers and social media play a key role in the communication between scientists and the general public. Communicating your science via the media can be positive and rewarding by providing the inherent joy of sharing your knowledge with a broader audience, promoting science as a fundamental part of culture and society, impacting decision and policy makers, and giving you a greater recognition by institutions, colleagues and funders. However, the interaction between scientists and journalists is not always straightforward. For instance, scientists may not always be able to translate their work into a compelling story, and journalists may sometimes misinterpret scientific output. In this paper, we present insights from hydrologists and journalists discussing the advantages and benefits as well as the potential pitfalls and aftermath of science-media interaction. As we perceive interacting with the media as a rewarding and essential part of our work, we aim to encourage scientists to participate in the diverse and evolving media landscape. With this paper, we call on the scientific community to support scientists who actively contribute to a fruitful science-media relationship

    An Integrated Systems Approach Unveils New Aspects of Microoxia-Mediated Regulation in Bradyrhizobium diazoefficiens

    Get PDF
    The adaptation of rhizobia from the free-living state in soil to the endosymbiotic state comprises several physiological changes in order to cope with the extremely low oxygen availability (microoxia) within nodules. To uncover cellular functions required for bacterial adaptation to microoxia directly at the protein level, we applied a systems biology approach on the key rhizobial model and soybean endosymbiont Bradyrhizobium diazoefficiens USDA 110 (formerly B. japonicum USDA 110). As a first step, the complete genome of B. diazoefficiens 110spc4, the model strain used in most prior functional genomics studies, was sequenced revealing a deletion of a ~202 kb fragment harboring 223 genes and several additional differences, compared to strain USDA 110. Importantly, the deletion strain showed no significantly different phenotype during symbiosis with several host plants, reinforcing the value of previous OMICS studies. We next performed shotgun proteomics and detected 2,900 and 2,826 proteins in oxically and microoxically grown cells, respectively, largely expanding our knowledge about the inventory of rhizobial proteins expressed in microoxia. A set of 62 proteins was significantly induced under microoxic conditions, including the two nitrogenase subunits NifDK, the nitrogenase reductase NifH, and several subunits of the high-affinity terminal cbb3 oxidase (FixNOQP) required for bacterial respiration inside nodules. Integration with the previously defined microoxia-induced transcriptome uncovered a set of 639 genes or proteins uniquely expressed in microoxia. Finally, besides providing proteogenomic evidence for novelties, we also identified proteins with a regulation similar to that of FixK2: transcript levels of these protein-coding genes were significantly induced, while the corresponding protein abundance remained unchanged or was down-regulated. This suggested that, apart from fixK2, additional B. diazoefficiens genes might be under microoxia-specific post-transcriptional control. This hypothesis was indeed confirmed for several targets (HemA, HemB, and ClpA) by immunoblot analysis

    Congenital heart disease risk loci identified by genome-wide association study in European patients

    Get PDF
    Genetic factors undoubtedly affect the development of congenital heart disease (CHD) but still remain ill defined. We sought to identify genetic risk factors associated with CHD and to accomplish a functional analysis of SNP-carrying genes. We performed a genome-wide association study (GWAS) of 4034 White patients with CHD and 8486 healthy controls. One SNP on chromosome 5q22.2 reached genome-wide significance across all CHD phenotypes and was also indicative for septal defects. One region on chromosome 20p12.1 pointing to the MACROD2 locus identified 4 highly significant SNPs in patients with transposition of the great arteries (TGA). Three highly significant risk variants on chromosome 17q21.32 within the GOSR2 locus were detected in patients with anomalies of thoracic arteries and veins (ATAV). Genetic variants associated with ATAV are suggested to influence the expression of WNT3, and the variant rs870142 related to septal defects is proposed to influence the expression of MSX7. We analyzed the expression of all 4 genes during cardiac differentiation of human and murine induced pluripotent stem cells in vitro and by single-cell RNA-Seq analyses of developing murine and human hearts. Our data show that MACROD2, GOSR2, WNT3, and MSX7 play an essential functional role in heart development at the embryonic and newborn stages
    corecore