29 research outputs found
The Complete Genome Sequence of Yersinia pseudotuberculosis IP31758, the Causative Agent of Far East Scarlet-Like Fever
The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains
Multiple antimicrobial resistance in plague: An emerging public health risk
Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern
Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells
<p>Abstract</p> <p>Background</p> <p>Effective prophylaxis and treatment for infections caused by biological threat agents (BTA) rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs.</p> <p>Methods</p> <p>To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays.</p> <p>Results</p> <p>We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the <it>in vitro</it> and <it>in vivo</it> findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized <it>B. anthracis </it>spores and 30 min post exposure to a bacterial toxin.</p> <p>Conclusion</p> <p>Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.</p
The pH 6 Antigen Is an Antiphagocytic Factor Produced by Yersinia pestis Independent of Yersinia Outer Proteins and Capsule Antigen
The pH 6 antigen (pH 6 Ag; PsaA) of Yersinia pestis has been shown to be a virulence factor. In this study, we set out to investigate the possible function of Y. pestis PsaA in a host cell line, RAW264.7 mouse macrophages, in order to better understand the role it might play in virulence. Y. pestis KIM5 derivatives with and without the pCD1 plasmid and their psaA isogenic counterparts and Escherichia coli HB101 and DΗ5α carrying a psaA clone or a vector control were used for macrophage infections. Macrophage-related bacteria and gentamicin-resistant intracellular bacteria generated from plate counting and direct microscopic examinations were used to evaluate these RAW264.7 macrophage infections. Y. pestis psaA isogenic strains did not show any significant difference in their abilities to associate with or bind to mouse macrophage cells. However, expression of psaA appeared to significantly reduce phagocytosis of both Y. pestis and E. coli by mouse macrophages (P < 0.05). Furthermore, we found that complementation of psaA mutant Y. pestis strains could completely restore the ability of the bacteria to resist phagocytosis. Fluorescence microscopy following differential labeling of intracellular and extracellular Y. pestis revealed that significantly lower numbers of psaA-expressing bacteria were located inside the macrophages. Enhanced phagocytosis resistance was specific for bacteria expressing psaA and did not influence the ability of the macrophages to engulf other bacteria. Our data demonstrate that Y. pestis pH 6 Ag does not enhance adhesion to mouse macrophages but rather promotes resistance to phagocytosis
Intraspecific Diversity of Yersinia pestis
Increased interest in the pathogenic potential of Yersinia pestis has emerged because of the potential threats from bioterrorism. Pathogenic potential is based on genetic factors present in a population of microbes, yet most studies evaluating the role of specific genes in virulence have used a limited number of strains. For Y. pestis this issue is complicated by the fact that most strains available for study in the Americas are clonally derived and thus genetically restricted, emanating from a strain of Y. pestis introduced into the United States in 1902 via marine shipping and subsequent spread of this strain throughout North and South America. In countries from the former Soviet Union (FSU), Mongolia, and China there are large areas of enzootic foci of Y. pestis infection containing genetically diverse strains that have been intensely studied by scientists in these countries. However, the results of these investigations are not generally known outside of these countries. Here we describe the variety of methods used in the FSU to classify Y. pestis strains based on genetic and phenotypic variation and show that there is a high level of diversity in these strains not reflected by ones obtained from sylvatic areas and patients in the Americas
Genotyping of a Homogeneous Group of Yersinia pestis Strains Isolated in the United States
Yersinia pestis, the causative agent of deadly plague, is considered a reemerging infectious disease and a significant biological terrorism threat. The present project focused on epidemiological investigation of the genetic variability of well-documented strains of Y. pestis from the United States by pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP) analysis with insertion sequences IS100 and IS285 as probes. We examined 37 U.S. Y. pestis strains and isolates of a single ribotype, ribotype B, recovered between 1939 and 1998 from patients, animals, and fleas. Our results showed that all isolates had similar PFGE patterns, but minor differences such as missing, additional, and shifted bands were found among almost all strains if they came from different parent strains. The 37 strains and isolates were divided into 26 PFGE types. RFLP analysis with IS100 as a probe divided these strains and isolates into 16 types, with 43% belonging to IS100 type 1. Typing with IS285 as a probe was less specific and led to only four RFLP types, with 81% belonging to type 1. Similarity analysis with BioNumerics software showed that all strains shared ≥80, 86, and 91% similarities on dendrograms prepared from digitized PFGE, IS100 RFLP analysis, and IS285 RFLP analysis images, respectively. Our results demonstrate that PFGE offers an increased ability to discriminate between strains (Simpson's index of diversity, 0.98) and therefore can significantly improve epidemiological studies related to the origin of new plague isolates
Complete DNA Sequence and Detailed Analysis of the Yersinia pestis KIM5 Plasmid Encoding Murine Toxin and Capsular Antigen
Yersinia pestis
, the causative agent of plague, harbors at least three plasmids necessary for full virulence of the organism, two of which are species specific. One of the
Y. pestis
-specific plasmids, pMT1, is thought to promote deep tissue invasion, resulting in more acute onset of symptoms and death. We determined the entire nucleotide sequence of
Y. pestis
KIM5 pMT1 and identified potential open reading frames (ORFs) encoded by the 100,990-bp molecule. Based on codon usage for known yersinial genes, homology with known proteins in the databases, and potential ribosome binding sites, we determined that 115 of the potential ORFs which we considered could encode polypeptides in
Y. pestis
. Five of these ORFs were genes previously identified as being necessary for production of the classic virulence factors, murine toxin (MT), and the fraction 1 (F1) capsule antigen. The regions of pMT1 encoding MT and F1 were surrounded by remnants of multiple transposition events and bacteriophage, respectively, suggesting horizontal gene transfer of these virulence factors. We identified seven new potential virulence factors that might interact with the mammalian host or flea vector. Forty-three of the remaining 115 putative ORFs did not display any significant homology with proteins in the current databases. Furthermore, DNA sequence analysis allowed the determination of the putative replication and partitioning regions of pMT1. We identified a single 2,450-bp region within pMT1 that could function as the origin of replication, including a RepA-like protein similar to RepFIB, RepHI1B, and P1 and P7 replicons. Plasmid partitioning function was located ca. 36 kb from the putative origin of replication and was most similar to the
parABS
bacteriophage P1 and P7 system.
Y. pestis
pMT1 encoded potential genes with a high degree of similarity to a wide variety of organisms, plasmids, and bacteriophage. Accordingly, our analysis of the pMT1 DNA sequence emphasized the mosaic nature of this large bacterial virulence plasmid and provided implications as to its evolution