7,381 research outputs found

    Tensor mesons produced in tau lepton decays

    Full text link
    Light tensor mesons (T = a_2, f_2 and K_2^*) can be produced in decays of tau leptons. In this paper we compute the branching ratios of tau --> T pi nu decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix element. The exclusive f_2(1270) pi^- decay mode turns out to have the largest branching ratio, of O(10^-4) . Our results indicate that the contributions of tensor meson intermediate states to the three-pseudoscalar channels of tau decays are rather small.Comment: 10 pages, 1 figure. Version accepted for publication in PRD, some typos are corrected and comments are added in section 4. Conclusions remain unchange

    The impact of SuperB on flavour physics

    Full text link
    This report provides a succinct summary of the physics programme of SuperB, and describes that potential in the context of experiments making measurements in flavour physics over the next 10 to 20 years. Detailed comparisons are made with Belle II and LHCb, the other B physics experiments that will run in this decade. SuperB will play a crucial role in defining the landscape of flavour physics over the next 20 years.Comment: 20 pages, 6 figure

    Tau spin correlations and the anomalous magnetic moment

    Get PDF
    We show that the precise determination of the Tau magnetic properties is possible in the next generation accelerators, specially at B/Flavour factories. We define spin correlation observables suitable to extract the real part of the magnetic form factor that, for the first time, will allow to test the standard model-QED predictions. In particular, the predicted QED-dependence with both the momentum transfer and the lepton mass can be precisely measured. Until now, the most stringent bounds on the τ\tau magnetic moment aτa_\tau come from LEP data with strong assumptions on the physics involved on the observed process. In this paper, we find three different combinations of spin correlations of the outgoing Taus that disentangle the magnetic moment form factor of the Tau lepton in the electromagnetic vertex. These combinations of asymmetries also get rid off the contributions coming from Z-mediating amplitudes to the defined correlations. Using unpolarized electron beams and an integrated luminosity of 15×1018b115 \times 10^{18} b^{-1}, the sensitivity to the τ\tau magnetic moment form factor is of the order 10610^{-6}. This sensitivity is two orders of magnitude better than the present existing high- or low-energy bounds on the magnetic moment and would allow its actual measurement with the precision of a few per cent.Comment: 14 pages, 1 figur

    T violation and the unidirectionality of time

    Get PDF
    An increasing number of experiments at the Belle, BNL, CERN, DA{\Phi}NE and SLAC accelerators are confirming the violation of time reversal invariance (T). The violation signifies a fundamental asymmetry between the past and future and calls for a major shift in the way we think about time. Here we show that processes which violate T symmetry induce destructive interference between different paths that the universe can take through time. The interference eliminates all paths except for two that represent continuously forwards and continuously backwards time evolution. Evidence from the accelerator experiments indicates which path the universe is effectively following. This work may provide fresh insight into the long-standing problem of modeling the dynamics of T violation processes. It suggests that T violation has previously unknown, large-scale physical effects and that these effects underlie the origin of the unidirectionality of time. It may have implications for the Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a view of the quantum nature of time itself.Comment: 24 pages, 5 figures. Final version accepted for publishing in Foundations of Physics. The final publication is available at http://www.springerlink.com/content/y3h4174jw2w78322

    SuperB: a linear high-luminosity B Factory

    Full text link
    This paper is based on the outcome of the activity that has taken place during the recent workshop on "SuperB in Italy" held in Frascati on November 11-12, 2005. The workshop was opened by a theoretical introduction of Marco Ciuchini and was structured in two working groups. One focused on the machine and the other on the detector and experimental issues. The present status on CP is mainly based on the results achieved by BaBar and Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e- asymmetric B Factories operating at the center of mass energy corresponding to the mass of the Y(4s). With the two B Factories taking data, the Unitarity Triangle is now beginning to be overconstrained by improving the measurements of the sides and now also of the angles alpha, and gamma. We are also in presence of the very intriguing results about the measurements of sin(2 beta) in the time dependent analysis of decay channels via penguin loops, where b --> s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as charm and ISR physics are important parts of the scientific program of a SuperB Factory. The physics case together with possible scenarios for the high luminosity SuperB Factory based on the concepts of the Linear Collider and the related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor

    Measurement of the B0 → D∗-π+π-π+branching fraction by BABAR

    Get PDF
    The BABAR collaboration measured the decay branching fraction B(B'→D∗-πππ+) =(ι∈l∞∞(stat.)±l 3∂ ∞(syst.)) × ∞l-∂ using a sample of (470.9 ± 2.8) × 106 BB pairs. This measurement will facilitate the measurement of B(B' → D∗- τ+ντ) with τ+ → π+π-π+ντ at hadronic colliders, improving the experimental precision on the normalization branching fraction B(B' → D∗-'π+ π-π+)

    Tau Physics 2006: Summary & Outlook

    Get PDF
    A large amount of new results have been presented at TAU2006. The highlights of the workshop, the present status of a few selected topics on lepton physics (universality, QCD tests, V_{us} determination from tau decay, g-2, neutrino oscillations, lepton-flavour violation) and the prospects for future improvements are briefly summarized.Comment: Conference Summary at the 9th International Workshop on Tau Lepton Physics (TAU06), 19-22 September 2006, Pisa (Italy

    Testing new physics with the electron g-2

    Get PDF
    We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). In a large class of models, new contributions to magnetic moments scale with the square of lepton masses and thus the anomaly in a_mu suggests a new-physics effect in a_e of (0.7 +- 0.2)*10^-13. We also present examples of new-physics theories in which this scaling is violated and larger effects in a_e are expected. In such models the value of a_e is correlated with specific predictions for processes with violation of lepton number or lepton universality, and with the electric dipole moment of the electron.Comment: 34 pages, 7 figures. Minor changes and references adde

    Light New Physics searches with BaBar

    Get PDF
    Several hypothetical light New Physics particles have been searched using the clean and large electron-positron collision samples collected by the BaBar collaboration around the Υ(4S) resonance. No evidence has been found and 90% confidence level upper limits have been set on a dark photon decaying into electron or muon pairs, on a next-to-minimal supersymmetric Higgs boson decaying to charmed hadrons, and to an exotic π0-like particle that would couple to the tau lepton
    corecore