15 research outputs found

    Utilizing the MEST score for prognostic staging in IgA nephropathy

    Get PDF
    Background The Oxford classification/MEST score is an established histopathologic scoring system for patients with IgA nephropathy (IgAN). The objective of this study was to derive a prognostic model for IgAN based on the MEST score and histopathologic features. Methods A total of 306 patients with biopsy-proven primary IgAN were included. Histopathologic samples were retrieved from the Norwegian Kidney Biopsy Registry and reclassified according to the Oxford classification. The study endpoint was end-stage renal disease (ESRD). Patients were subclassified into three risk models based on histologic features (Model A), a composite score calculated from the adjusted hazard ratio values (Model B), and on quartiles (Model C). Results The mean follow-up time was 16.5 years (range 0.2–28.1). In total, 61 (20%) patients reached ESRD during the study period. Univariate analysis of M, E, S, T and C lesions demonstrated that all types were associated with an increased risk of ESRD; however, a multivariate analysis revealed that only S, T and C lesions were associated with poor outcomes. Statistical analysis of 15-year data demonstrated that Models A and B were as predictive as the MEST score, with an area-under-the-curve at 0.85. The Harrel c index values were 0.81 and 0.80 for the MEST score and Models A and B, respectively. In the present cohort, adding C lesions to the MEST score did not improve the models prognostic value. Conclusions Patients can be divided into risk classes based on their MEST scores. Histopathologic data provide valuable prognostic information at the time of diagnosis. Model B was the most suitable for clinical practice because it was the most user-friendly.publishedVersio

    Validation of two IgA nephropathy risk-prediction tools using a cohort with a long follow-up

    Get PDF
    Background: Recently, two immunoglobulin A (IgA) nephropathy-prediction tools were developed that combine clinical and histopathologic parameters. The International IgAN Prediction Tool predicts the risk for 50% declines in the estimated glomerular filtration rate or end-stage kidney disease up to 80 months after diagnosis. The IgA Nephropathy Clinical Decision Support System uses artificial neural networks to estimate the risk for end-stage kidney disease. We aimed to externally validate both prediction tools using a Norwegian cohort with a long-term follow-up. Methods: We included 306 patients with biopsy-proven primary IgA nephropathy in this study. Histopathologic samples were retrieved from the Norwegian Kidney Biopsy Registry and reclassified according to the Oxford Classification. We used discrimination and calibration as principles for externally validating the prognostic models. Results: The median patient follow-up was 17.1 years. A cumulative, dynamic, time-dependent receiver operating characteristic analysis showed area under the curve values ranging from 0.90 at 5 years to 0.83 at 20 years for the International IgAN Prediction Tool, while time-naive analysis showed an area under the curve value at 0.83 for the IgA Nephropathy Clinical Decision Support System. The International IgAN Prediction Tool was well calibrated, while the IgA Nephropathy Clinical Decision Support System tends to underestimate risk for patients at higher risk and overestimates risk in the lower risk categories. Conclusions: We have externally validated two prediction tools for IgA nephropathy. The International IgAN Prediction Tool performed well, while the IgA Nephropathy Clinical Decision Support System has some limitations.publishedVersio

    MuSIC: Multi-Sequential Interactive Co-Registration for Cancer Imaging Data based on Segmentation Masks

    Get PDF
    In gynecologic cancer imaging, multiple magnetic resonance imaging (MRI) sequences are acquired per patient to reveal different tissue characteristics. However, after image acquisition, the anatomical structures can be misaligned in the various sequences due to changing patient location in the scanner and organ movements. The co-registration process aims to align the sequences to allow for multi-sequential tumor imaging analysis. However, automatic co-registration often leads to unsatisfying results. To address this problem, we propose the web-based application MuSIC (Multi-Sequential Interactive Co-registration). The approach allows medical experts to co-register multiple sequences simultaneously based on a pre-defined segmentation mask generated for one of the sequences. Our contributions lie in our proposed workflow. First, a shape matching algorithm based on dual annealing searches for the tumor position in each sequence. The user can then interactively adapt the proposed segmentation positions if needed. During this procedure, we include a multi-modal magic lens visualization for visual quality assessment. Then, we register the volumes based on the segmentation mask positions. We allow for both rigid and deformable registration. Finally, we conducted a usability analysis with seven medical and machine learning experts to verify the utility of our approach. Our participants highly appreciate the multi-sequential setup and see themselves using MuSIC in the future. Best Paper Honorable Mention at VCBM2022publishedVersio

    Interobserver agreement and prognostic impact for MRI–based 2018 FIGO staging parameters in uterine cervical cancer

    Get PDF
    Objectives To evaluate the interobserver agreement for MRI–based 2018 International Federation of Gynecology and Obstetrics (FIGO) staging parameters in patients with cervical cancer and assess the prognostic value of these MRI parameters in relation to other clinicopathological markers. Methods This retrospective study included 416 women with histologically confirmed cervical cancer who underwent pretreatment pelvic MRI from May 2002 to December 2017. Three radiologists independently recorded MRI–derived staging parameters incorporated in the 2018 FIGO staging system. Kappa coefficients (κ) for interobserver agreement were calculated. The predictive and prognostic values of the MRI parameters were explored using ROC analyses and Kaplan–Meier with log-rank tests, and analyzed in relation to clinicopathological patient characteristics. Results Overall agreement was substantial for the staging parameters: tumor size > 2 cm (κ = 0.80), tumor size > 4 cm (κ = 0.76), tumor size categories (≤ 2 cm; > 2 and ≤ 4 cm; > 4 cm) (κ = 0.78), parametrial invasion (κ = 0.63), vaginal invasion (κ = 0.61), and enlarged lymph nodes (κ = 0.63). Higher MRI–derived tumor size category (≤ 2 cm; > 2 and ≤ 4 cm; > 4 cm) was associated with a stepwise reduction in survival (p ≤ 0.001 for all). Tumor size > 4 cm and parametrial invasion at MRI were associated with aggressive clinicopathological features, and the incorporation of these MRI–based staging parameters improved risk stratification when compared to corresponding clinical assessments alone. Conclusion The interobserver agreement for central MRI–derived 2018 FIGO staging parameters was substantial. MRI improved the identification of patients with aggressive clinicopathological features and poor survival, demonstrating the potential impact of MRI enabling better prognostication and treatment tailoring in cervical cancer.publishedVersio

    What MRI-based tumor size measurement is best for predicting long-term survival in uterine cervical cancer?

    Get PDF
    Background: Tumor size assessment by MRI is central for staging uterine cervical cancer. However, the optimal role of MRI-derived tumor measurements for prognostication is still unclear. Material and methods: This retrospective cohort study included 416 women (median age: 43 years) diagnosed with cervical cancer during 2002–2017 who underwent pretreatment pelvic MRI. The MRIs were independently read by three radiologists, measuring maximum tumor diameters in three orthogonal planes and maximum diameter irrespective of plane (MAXimaging). Inter-reader agreement for tumor size measurements was assessed by intraclass correlation coefficients (ICCs). Size was analyzed in relation to age, International Federation of Gynecology and Obstetrics (FIGO) (2018) stage, histopathological markers, and disease-specific survival using Kaplan–Meier-, Cox regression-, and time-dependent receiver operating characteristics (tdROC) analyses. Results: All MRI tumor size variables (cm) yielded high areas under the tdROC curves (AUCs) for predicting survival (AUC 0.81–0.84) at 5 years after diagnosis and predicted outcome (hazard ratios [HRs] of 1.42–1.76, p < 0.001 for all). Only MAXimaging independently predicted survival (HR = 1.51, p = 0.03) in the model including all size variables. The optimal cutoff for maximum tumor diameter (≥ 4.0 cm) yielded sensitivity (specificity) of 83% (73%) for predicting disease-specific death after 5 years. Inter-reader agreement for MRI-based primary tumor size measurements was excellent, with ICCs of 0.83–0.85. Conclusion: Among all MRI-derived tumor size measurements, MAXimaging was the only independent predictor of survival. MAXimaging ≥ 4.0 cm represents the optimal cutoff for predicting long-term disease-specific survival in cervical cancer. Inter-reader agreement for MRI-based tumor size measurements was excellent.publishedVersio

    Fully Automatic Whole-Volume Tumor Segmentation in Cervical Cancer

    Get PDF
    Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide. Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treatment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible in the clinic. We present a fully automatic method for the 3D segmentation of primary CC lesions using state-of-the-art deep learning (DL) techniques. In 131 CC patients, the primary tumor was manually segmented on T2-weighted MRI by two radiologists (R1, R2). Patients were separated into a train/validation (n = 105) and a test- (n = 26) cohort. The segmentation performance of the DL algorithm compared with R1/R2 was assessed with Dice coefficients (DSCs) and Hausdorff distances (HDs) in the test cohort. The trained DL network retrieved whole-volume tumor segmentations yielding median DSCs of 0.60 and 0.58 for DL compared with R1 (DL-R1) and R2 (DL-R2), respectively, whereas DSC for R1-R2 was 0.78. Agreement for primary tumor volumes was excellent between raters (R1-R2: intraclass correlation coefficient (ICC) = 0.93), but lower for the DL algorithm and the raters (DL-R1: ICC = 0.43; DL-R2: ICC = 0.44). The developed DL algorithm enables the automated estimation of tumor size and primary CC tumor segmentation. However, segmentation agreement between raters is better than that between DL algorithm and raters.publishedVersio

    Preoperative pelvic MRI and 2-[18F]FDG PET/CT for lymph node staging and prognostication in endometrial cancer—time to revisit current imaging guidelines?

    Get PDF
    Objective This study presents the diagnostic performance of four different preoperative imaging workups (IWs) for prediction of lymph node metastases (LNMs) in endometrial cancer (EC): pelvic MRI alone (IW1), MRI and [18F]FDG-PET/CT in all patients (IW2), MRI with selective [18F]FDG-PET/CT if high-risk preoperative histology (IW3), and MRI with selective [18F]FDG-PET/CT if MRI indicates FIGO stage ≥ 1B (IW4). Methods In 361 EC patients, preoperative staging parameters from both pelvic MRI and [18F]FDG-PET/CT were recorded. Area under receiver operating characteristic curves (ROC AUC) compared the diagnostic performance for the different imaging parameters and workups for predicting surgicopathological FIGO stage. Survival data were assessed using Kaplan-Meier estimator with log-rank test. Results MRI and [18F]FDG-PET/CT staging parameters yielded similar AUCs for predicting corresponding FIGO staging parameters in low-risk versus high-risk histology groups (p ≥ 0.16). The sensitivities, specificities, and AUCs for LNM prediction were as follows: IW1—33% [9/27], 95% [185/193], and 0.64; IW2—56% [15/27], 90% [174/193], and 0.73 (p = 0.04 vs. IW1); IW3—44% [12/27], 94% [181/193], and 0.69 (p = 0.13 vs. IW1); and IW4—52% [14/27], 91% [176/193], and 0.72 (p = 0.06 vs. IW1). IW3 and IW4 selected 34% [121/361] and 54% [194/361] to [18F]FDG-PET/CT, respectively. Employing IW4 identified three distinct patient risk groups that exhibited increasing FIGO stage (p < 0.001) and stepwise reductions in survival (p ≤ 0.002). Conclusion Selective [18F]FDG-PET/CT in patients with high-risk MRI findings yields better detection of LNM than MRI alone, and similar diagnostic performance to that of MRI and [18F]FDG-PET/CT in all.publishedVersio

    Utilizing the MEST score for prognostic staging in IgA nephropathy

    No full text
    Background The Oxford classification/MEST score is an established histopathologic scoring system for patients with IgA nephropathy (IgAN). The objective of this study was to derive a prognostic model for IgAN based on the MEST score and histopathologic features. Methods A total of 306 patients with biopsy-proven primary IgAN were included. Histopathologic samples were retrieved from the Norwegian Kidney Biopsy Registry and reclassified according to the Oxford classification. The study endpoint was end-stage renal disease (ESRD). Patients were subclassified into three risk models based on histologic features (Model A), a composite score calculated from the adjusted hazard ratio values (Model B), and on quartiles (Model C). Results The mean follow-up time was 16.5 years (range 0.2–28.1). In total, 61 (20%) patients reached ESRD during the study period. Univariate analysis of M, E, S, T and C lesions demonstrated that all types were associated with an increased risk of ESRD; however, a multivariate analysis revealed that only S, T and C lesions were associated with poor outcomes. Statistical analysis of 15-year data demonstrated that Models A and B were as predictive as the MEST score, with an area-under-the-curve at 0.85. The Harrel c index values were 0.81 and 0.80 for the MEST score and Models A and B, respectively. In the present cohort, adding C lesions to the MEST score did not improve the models prognostic value. Conclusions Patients can be divided into risk classes based on their MEST scores. Histopathologic data provide valuable prognostic information at the time of diagnosis. Model B was the most suitable for clinical practice because it was the most user-friendly

    Interobserver agreement and prognostic impact for MRI–based 2018 FIGO staging parameters in uterine cervical cancer

    Get PDF
    Objectives To evaluate the interobserver agreement for MRI–based 2018 International Federation of Gynecology and Obstetrics (FIGO) staging parameters in patients with cervical cancer and assess the prognostic value of these MRI parameters in relation to other clinicopathological markers. Methods This retrospective study included 416 women with histologically confirmed cervical cancer who underwent pretreatment pelvic MRI from May 2002 to December 2017. Three radiologists independently recorded MRI–derived staging parameters incorporated in the 2018 FIGO staging system. Kappa coefficients (κ) for interobserver agreement were calculated. The predictive and prognostic values of the MRI parameters were explored using ROC analyses and Kaplan–Meier with log-rank tests, and analyzed in relation to clinicopathological patient characteristics. Results Overall agreement was substantial for the staging parameters: tumor size > 2 cm (κ = 0.80), tumor size > 4 cm (κ = 0.76), tumor size categories (≤ 2 cm; > 2 and ≤ 4 cm; > 4 cm) (κ = 0.78), parametrial invasion (κ = 0.63), vaginal invasion (κ = 0.61), and enlarged lymph nodes (κ = 0.63). Higher MRI–derived tumor size category (≤ 2 cm; > 2 and ≤ 4 cm; > 4 cm) was associated with a stepwise reduction in survival (p ≤ 0.001 for all). Tumor size > 4 cm and parametrial invasion at MRI were associated with aggressive clinicopathological features, and the incorporation of these MRI–based staging parameters improved risk stratification when compared to corresponding clinical assessments alone. Conclusion The interobserver agreement for central MRI–derived 2018 FIGO staging parameters was substantial. MRI improved the identification of patients with aggressive clinicopathological features and poor survival, demonstrating the potential impact of MRI enabling better prognostication and treatment tailoring in cervical cancer

    What MRI-based tumor size measurement is best for predicting long-term survival in uterine cervical cancer?

    No full text
    Background: Tumor size assessment by MRI is central for staging uterine cervical cancer. However, the optimal role of MRI-derived tumor measurements for prognostication is still unclear. Material and methods: This retrospective cohort study included 416 women (median age: 43 years) diagnosed with cervical cancer during 2002–2017 who underwent pretreatment pelvic MRI. The MRIs were independently read by three radiologists, measuring maximum tumor diameters in three orthogonal planes and maximum diameter irrespective of plane (MAXimaging). Inter-reader agreement for tumor size measurements was assessed by intraclass correlation coefficients (ICCs). Size was analyzed in relation to age, International Federation of Gynecology and Obstetrics (FIGO) (2018) stage, histopathological markers, and disease-specific survival using Kaplan–Meier-, Cox regression-, and time-dependent receiver operating characteristics (tdROC) analyses. Results: All MRI tumor size variables (cm) yielded high areas under the tdROC curves (AUCs) for predicting survival (AUC 0.81–0.84) at 5 years after diagnosis and predicted outcome (hazard ratios [HRs] of 1.42–1.76, p < 0.001 for all). Only MAXimaging independently predicted survival (HR = 1.51, p = 0.03) in the model including all size variables. The optimal cutoff for maximum tumor diameter (≥ 4.0 cm) yielded sensitivity (specificity) of 83% (73%) for predicting disease-specific death after 5 years. Inter-reader agreement for MRI-based primary tumor size measurements was excellent, with ICCs of 0.83–0.85. Conclusion: Among all MRI-derived tumor size measurements, MAXimaging was the only independent predictor of survival. MAXimaging ≥ 4.0 cm represents the optimal cutoff for predicting long-term disease-specific survival in cervical cancer. Inter-reader agreement for MRI-based tumor size measurements was excellent
    corecore