312 research outputs found

    International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature.

    Get PDF
    Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature

    Somatostatin receptors in GtoPdb v.2023.1

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [98]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [61]

    Somatostatin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Somatostatin (somatotropin release inhibiting factor) is an abundant neuropeptide, which acts on five subtypes of somatostatin receptor (SST1-SST5; nomenclature as agreed by the NC-IUPHAR Subcommittee on Somatostatin Receptors [89]). Activation of these receptors produces a wide range of physiological effects throughout the body including the inhibition of secretion of many hormones. Endogenous ligands for these receptors are somatostatin-14 (SRIF-14) and somatostatin-28 (SRIF-28). cortistatin-14 has also been suggested to be an endogenous ligand for somatostatin receptors [56]

    Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates.

    Get PDF
    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co-cultured with human intestinal cells. We show that filtered media from co-cultures contain a factor that reduces conjugation efficiency. Protease treatment of the filtered media eliminates this inhibition of conjugation. This data suggests that a peptide or protein based factor is secreted on the apical side of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut
    corecore