758 research outputs found

    Transport in Ultraclean YBa2_2Cu3_3O7_7: neither Unitary nor Born Impurity Scattering

    Full text link
    The thermal conductivity of ultraclean YBa2_2Cu3_3O7_7 was measured at very low temperature in magnetic fields up to 13 T. The temperature and field dependence of the electronic heat conductivity show that two widespread assumptions of transport theory applied to unconventional superconductors fail for clean cuprates: impurity scattering cannot be treated in the usual unitary limit (nor indeed in the Born limit), and scattering of quasiparticles off vortices cannot be neglected. Our study also sheds light on the long-standing puzzle of a sudden onset of a "plateau" in the thermal conductivity of Bi-2212 versus field.Comment: 5 pages, 3 figures, submitted to Physical Review Letter

    Ultrasonic attenuation in magnetic fields for superconducting states with line nodes in Sr2RuO4

    Full text link
    We calculate the ultrasonic attenuation in magnetic fields for superconducting states with line nodes vertical or horizontal relative to the RuO_2 planes. This theory, which is valid for fields near Hc2 and not too low temperatures, takes into account the effects of supercurrent flow and Andreev scattering by the Abrikosov vortex lattice. For rotating in-plane field H(theta) the attenuation alpha(theta)exhibits variations of fourfold symmetry in the rotation angle theta. In the case of vertical nodes, the transverse T100 sound mode yields the weakest(linear)H and T dependence of alpha, while the longitudinal L100 mode yields a stronger (quadratic) H and T dependence. This is in strong contrast to the case of horizontal line nodes where alpha is the same for the T100 and L100 modes (apart from a shift of pi/4 in field direction) and is roughly a quadratic function of H and T. Thus we conclude that measurements of alpha in in-plane magnetic fields for different in-plane sound modes may be an important tool for probing the nodal structure of the gap in Sr_2RuO_4.Comment: 5 pages, 6 figures, replaced in non-preprint form, to appear in Phys. Rev.

    More on FOX News: FOXA1 on the horizon of estrogen receptor function and endocrine response

    Get PDF
    Estrogen receptor α (ER) is a major driver of breast cancer and the target of endocrine therapy. Full disclosure of the cofactors regulating ER interactions with chromatin and its transcriptional regulatory activity is still elusive. Novel genome-wide profiling tools have mapped ER binding events in breast cancer cells and delineated cofactors important in ER activity. Among these, the Forkhead protein FOXA1 is emerging as a key factor dictating global chromatin structure and the transcriptional function of ER in breast and non-breast cancer cells. The significance of FOXA1 in the chromatin interactions and transcriptional regulation of both estrogen- and tamoxifen-bound ER, and in supporting tamoxifen-resistant cell growth, may impact current endocrine therapies

    Interlayer pair tunneling and gap anisotropy in YBa2_2Cu3_3O7−δ_{7-\delta}

    Full text link
    Recent ARPES measurement observed a large abab-axis gap anisotropy, Δ(0,π)/Δ(π,0)=1.5\Delta(0,\pi)/\Delta(\pi,0)=1.5, in clean YBa2_2Cu3_3O7−δ_{7-\delta}. This indicates that some sub-dominant component may exist in the dx2−y2d_{x^2-y^2}-wave dominant gap. We propose that the interlayer pairing tunneling contribution can be determined through the investigation of the order parameter anisotropy. Their potentially observable features in transport and spin dynamics are also studied.Comment: 4 pages, 3 figure

    Quasiparticle transport in the vortex state of YBa_2Cu_3O_6.9

    Full text link
    The effect of vortices on quasiparticle transport in cuprate superconductors was investigated by measuring the low temperature thermal conductivity of YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T \to 0) is found to increase with field, directly reflecting the occupation of extended quasiparticle states. A study for different Zn impurity concentrations reveals a good agreement with recent calculations for a d-wave superconductor, thereby shedding light on the nature of scattering by both impurities and vortices. It also provides a quantitative measure of the gap near the nodes.Comment: 4 pages, 2 included eps figures, significant new analysis wrt other experiments, to appear in Phys Rev Lett 29 March 199

    Assessment of the cortisol awakening response: expert consensus guidelines

    Get PDF
    The cortisol awakening response (CAR), the marked increase in cortisol secretion over the first 30–45 min after morning awakening, has been related to a wide range of psychosocial, physical and mental health parameters, making it a key variable for psychoneuroendocrinological research. The CAR is typically assessed from self-collection of saliva samples within the domestic setting. While this confers ecological validity, it lacks direct researcher oversight which can be problematic as the validity of CAR measurement critically relies on participants closely following a timed sampling schedule, beginning with the moment of awakening. Researchers assessing the CAR thus need to take important steps to maximize and monitor saliva sampling accuracy as well as consider a range of other relevant methodological factors. To promote best practice of future research in this field, the International Society of Psychoneuroendocrinology initiated an expert panel charged with (i) summarizing relevant evidence and collective experience on methodological factors affecting CAR assessment and (ii) formulating clear consensus guidelines for future research. The present report summarizes the results of this undertaking. Consensus guidelines are presented on central aspects of CAR assessment, including objective control of sampling accuracy/adherence, participant instructions, covariate accounting, sampling protocols, quantification strategies as well as reporting and interpreting of CAR data. Meeting these methodological standards in future research will create more powerful research designs, thus yielding more reliable and reproducible results and helping to further advance understanding in this evolving field of research

    Influence of gap structures to specific heat in oriented magnetic fields: Application to the orbital dependent superconductor, Sr2_2RuO4_4

    Full text link
    We discuss influence of modulation of gap function and anisotropy of Fermi velocity to field angle dependences of upper critical field, Hc2H_{c2}, and specific heat, CC, on the basis of the approximate analytic solution in the quasiclassical formalism. Using 4-fold modulation of the gap function and the Fermi velocity in the single-band model, we demonstrate field and temperature dependence of oscillatory amplitude of Hc2H_{c2} and CC. We apply the method to the effective two-band model to discuss the gap structure of Sr2_2RuO4_4, focusing on recent field angle-resolved experiments. It is shown that the gap structures with the intermediate magnitude of minima in [100][100] direction for γ\gamma band, and tiny minima of gaps in [110][110] directions for α\alpha and β\beta bands give consistent behaviors with experiments. The interplay of the above two gaps also explains the anomalous temperature dependence of in-plane Hc2H_{c2} anisotropy, where the opposite contribution from the passive αβ\alpha\beta band is pronounced near TcT_c.Comment: 7 pages, 11 figures in JPSJ forma
    • …
    corecore