1,724 research outputs found
Multipole Expansion for the Electron-Nucleus Scattering at High Energies in the Unified Electroweak Theory
The article presents the multipole expansion for the electron-nucleus
scattering cross section at high energies within the framework of the unified
electroweak theory. The electroweak currents of the nucleus are expanded into
simple components with definite angular momentum, which are called the
multipole form factors. The multipole expansion of the cross section is a
consequence of the above expansion. Besides the familiar electromagnetic form
factors, there are weak form factors related to weak interactions,
corresponding to the vector and axial (pseudovector) weak currents. We do not
use the impulse approximation, the multipole form factors are calculated
directly, using only the Born approximation. We will present some examples in
the next paper.Comment: 7 pages, 0 figur
Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation
Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance
Giant Spin Seebeck Effect through an Interface Organic Semiconductor
Interfacing an organic semiconductor C60 with a non-magnetic metallic thin
film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at
ambient temperature, while its interface with a magnetic metal (Fe or Co) can
tune the anisotropic magnetic surface property of the material. Here, we
demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12:
YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient
spin current transport via the thermally driven spin Seebeck effect (SSE).
Experiments and first principles calculations consistently show that the
presence of C60 reduces significantly the conductivity mismatch between YIG and
Pt and the surface perpendicular magnetic anisotropy of YIG, giving rise to
enhanced spin mixing conductance across YIG/C60/Pt interfaces. As a result, a
600% increase in the SSE voltage (VLSSE) has been realized in YIG/C60/Pt
relative to YIG/Pt. Temperature-dependent SSE voltage measurements on
YIG/C60/Pt with varying C60 layer thicknesses also show an exponential increase
in VLSSE at low temperatures below 200 K, resembling the temperature evolution
of spin diffusion length of C60. Our study emphasizes the important roles of
the magnetic anisotropy and the spin diffusion length of the intermediate layer
in the SSE in YIG/C60/Pt structures, providing a new pathway for developing
novel spin-caloric materials
ATLASGAL-selected massive clumps in the inner Galaxy: I. CO depletion and isotopic ratios
In the low-mass regime, it is found that the gas-phase abundances of
C-bearing molecules in cold starless cores rapidly decrease with increasing
density, as the molecules form mantles on dust grains. We study CO depletion in
102 massive clumps selected from the ATLASGAL 870 micron survey, and
investigate its correlation with evolutionary stage and with the physical
parameters of the sources. Moreover, we study the gradients in [12C]/[13C] and
[18O]/[17O] isotopic ratios across the inner Galaxy, and the virial stability
of the clumps. We use low-J emission lines of CO isotopologues and the dust
continuum emission to infer the depletion factor fD. RATRAN one-dimensional
models were also used to determine fD and to investigate the presence of
depletion above a density threshold. The isotopic ratios and optical depth were
derived with a Bayesian approach. We find a significant number of clumps with a
large fD, up to ~20. Larger values are found for colder clumps, thus for
earlier evolutionary phases. For massive clumps in the earliest stages of
evolution we estimate the radius of the region where CO depletion is important
to be a few tenths of a pc. Clumps are found with total masses derived from
dust continuum emission up to ~20 times higher than the virial mass, especially
among the less evolved sources. These large values may in part be explained by
the presence of depletion: if the CO emission comes mainly from the low-density
outer layers, the molecules may be subthermally excited, leading to an
overestimate of the dust masses. CO depletion in high-mass clumps seems to
behave as in the low-mass regime, with less evolved clumps showing larger
values for the depletion than their more evolved counterparts, and increasing
for denser sources. The C and O isotopic ratios are consistent with previous
determinations, and show a large intrinsic scatter.Comment: 20 pages, 17 figures, 38 pages of online material (tables and
figures
Magneto-transport properties of monolayer borophene in perpendicular magnetic field: influence of electron-phonon interaction
The magneto-transport properties of a borophene monolayer in a perpendicular magnetic field B are studied via calculating the conductivity tensor and resistance under electron-optical phonon interaction by using the linear response theory. Numerical results are obtained and discussed for some specific parameters. The magnetic field-dependent longitudinal conductivity shows the magneto-phonon resonance effect that describes the transition of electrons between Landau levels by absorbing/emitting an optical phonon. The Hall conductivity increases first and then decreases with the magnetic field strength. Also, the longitudinal resistance increases significantly with increasing temperature, which shows the metal behaviour of the material. Practically, the observed magneto-phonon resonance can be applied to experimentally determine some material parameters, such as the distance between Landau levels and the optical phonon energy
Asynchronous Training of Word Embeddings for Large Text Corpora
Word embeddings are a powerful approach for analyzing language and have been
widely popular in numerous tasks in information retrieval and text mining.
Training embeddings over huge corpora is computationally expensive because the
input is typically sequentially processed and parameters are synchronously
updated. Distributed architectures for asynchronous training that have been
proposed either focus on scaling vocabulary sizes and dimensionality or suffer
from expensive synchronization latencies.
In this paper, we propose a scalable approach to train word embeddings by
partitioning the input space instead in order to scale to massive text corpora
while not sacrificing the performance of the embeddings. Our training procedure
does not involve any parameter synchronization except a final sub-model merge
phase that typically executes in a few minutes. Our distributed training scales
seamlessly to large corpus sizes and we get comparable and sometimes even up to
45% performance improvement in a variety of NLP benchmarks using models trained
by our distributed procedure which requires of the time taken by the
baseline approach. Finally we also show that we are robust to missing words in
sub-models and are able to effectively reconstruct word representations.Comment: This paper contains 9 pages and has been accepted in the WSDM201
The Gattini cameras for optical sky brightness measurements at Dome C, Antarctica
The Gattini cameras are two site testing instruments for
the measurement of optical sky brightness, large area cloud cover and auroral detection of the night sky above the high altitude Dome C site in Antarctica. The cameras have been operating since installation in January 2006 and are currently at the end of the first Antarctic winter season. The cameras are transit in nature and are virtually identical both adopting Apogee Alta CCD detectors. By taking frequent images of the night sky we obtain long term cloud cover statistics, measure the sky background intensity as a function of solar and lunar altitude and
phase and directly measure the spatial extent of bright aurora if present and when they occur. The full data set will return in December 2006 however a limited amount of data has been transferred via the Iridium network enabling preliminary data reduction and system evaluation.
An update of the project is presented together with preliminary results from data taken since commencement of the winter season
- …