476 research outputs found

    School Dropouts and Conditional Cash Transfers: Evidence from a Randomized Controlled Trial in Rural China’s Junior High Schools.

    Get PDF
    Recent anecdotal reports suggest that dropout rates may be higher and actually increasing over time in poor rural areas. There are many reasons not to be surprised that there is a dropout problem, given the fact that China has a high level of poverty among the rural population, a highly competitive education system and rapidly increasing wages for unskilled workers. The overall goal of this study is to examine if there is a dropout problem in rural China and to explore the effectiveness that a Conditional Cash Transfer (CCT) program could have on dropouts (and mechanism by which the CCT might affect drop outs). To meet this objective, we conducted a randomized controlled trial (RCT) of a CCT using a sample of 300 junior high school students in a nationally-designated poor county in Northwest China. Using our data, we found that the annual dropout rate in the study county was high, about 7%. We find, however, that a CCT program reduces drop outs by 60%; the dropout rate is 13.3% in the control group and 5.3 % in the treatment group. The program is most effective in the case of girls, younger students and the poorest performing students.

    School dropouts and conditional cash transfers: evidence from a randomized controlled trial in rural China's junior high schools.

    Get PDF
    Recent anecdotal reports suggest that dropout rates may be higher and actually increasing over time in poor rural areas. There are many reasons not to be surprised that there is a dropout problem, given the fact that China has a high level of poverty among the rural population, a highly competitive education system and rapidly increasing wages for unskilled workers. The overall goal of this study is to examine if there is a dropout problem in rural China and to explore the effectiveness that a Conditional Cash Transfer (CCT) program could have on dropouts (and mechanism by which the CCT might affect drop outs). To meet this objective, we conducted a randomized controlled trial (RCT) of a CCT using a sample of 300 junior high school students in a nationally-designated poor county in Northwest China. Using our data, we found that the annual dropout rate in the study county was high, about 7.0%. We find, however, that a CCT program reduces drop outs by 60%; the dropout rate is 13.3% in the control group and 5.3 % in the treatment group. The program is most effective in the case of girls, younger students and the poorest performing students.

    Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little genomic or trancriptomic information on <it>Ganoderma lucidum </it>(<it>Lingzhi</it>) is known. This study aims to discover the transcripts involved in secondary metabolite biosynthesis and developmental regulation of <it>G. lucidum </it>using an expressed sequence tag (EST) library.</p> <p>Methods</p> <p>A cDNA library was constructed from the <it>G</it>. <it>lucidum </it>fruiting body. Its high-quality ESTs were assembled into unique sequences with contigs and singletons. The unique sequences were annotated according to sequence similarities to genes or proteins available in public databases. The detection of simple sequence repeats (SSRs) was preformed by online analysis.</p> <p>Results</p> <p>A total of 1,023 clones were randomly selected from the <it>G</it>. <it>lucidum </it>library and sequenced, yielding 879 high-quality ESTs. These ESTs showed similarities to a diverse range of genes. The sequences encoding squalene epoxidase (SE) and farnesyl-diphosphate synthase (FPS) were identified in this EST collection. Several candidate genes, such as <it>hydrophobin</it>, <it>MOB2</it>, <it>profilin </it>and <it>PHO84 </it>were detected for the first time in <it>G</it>. <it>lucidum</it>. Thirteen (13) potential SSR-motif microsatellite loci were also identified.</p> <p>Conclusion</p> <p>The present study demonstrates a successful application of EST analysis in the discovery of transcripts involved in the secondary metabolite biosynthesis and the developmental regulation of <it>G. lucidum</it>.</p

    Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-Regulated Cell Cycle Withdrawal

    Get PDF
    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration

    Genetic variants in ELOVL2 and HSD17B12 predict melanoma‐specific survival

    Get PDF
    Fatty acids play a key role in cellular bioenergetics, membrane biosynthesis and intracellular signaling processes and thus may be involved in cancer development and progression. In the present study, we comprehensively assessed associations of 14,522 common single‐nucleotide polymorphisms (SNPs) in 149 genes of the fatty‐acid synthesis pathway with cutaneous melanoma disease‐specific survival (CMSS). The dataset of 858 cutaneous melanoma (CM) patients from a published genome‐wide association study (GWAS) by The University of Texas M.D. Anderson Cancer Center was used as the discovery dataset, and the identified significant SNPs were validated by a dataset of 409 CM patients from another GWAS from the Nurses’ Health and Health Professionals Follow‐up Studies. We found 40 noteworthy SNPs to be associated with CMSS in both discovery and validation datasets after multiple comparison correction by the false positive report probability method, because more than 85% of the SNPs were imputed. By performing functional prediction, linkage disequilibrium analysis, and stepwise Cox regression selection, we identified two independent SNPs of ELOVL2 rs3734398 T>C and HSD17B12 rs11037684 A>G that predicted CMSS, with an allelic hazards ratio of 0.66 (95% confidence interval = 0.51–0.84 and p = 8.34 × 10−4) and 2.29 (1.55–3.39 and p = 3.61 × 10−5), respectively. Finally, the ELOVL2 rs3734398 variant CC genotype was found to be associated with a significantly increased mRNA expression level. These SNPs may be potential markers for CM prognosis, if validated by additional larger and mechanistic studies

    Genetic-Based Hypertension Subtype Identification Using Informative SNPs

    Get PDF
    In this work, we proposed a process to select informative genetic variants for identifying clinically meaningful subtypes of hypertensive patients. We studied 575 African American (AA) and 612 Caucasian hypertensive participants enrolled in the Hypertension Genetic Epidemiology Network (HyperGEN) study and analyzed each race-based group separately. All study participants underwent GWAS (Genome-Wide Association Studies) and echocardiography. We applied a variety of statistical methods and filtering criteria, including generalized linear models, F statistics, burden tests, deleterious variant filtering, and others to select the most informative hypertension-related genetic variants. We performed an unsupervised learning algorithm non-negative matrix factorization (NMF) to identify hypertension subtypes with similar genetic characteristics. Kruskal–Wallis tests were used to demonstrate the clinical meaningfulness of genetic-based hypertension subtypes. Two subgroups were identified for both African American and Caucasian HyperGEN participants. In both AAs and Caucasians, indices of cardiac mechanics differed significantly by hypertension subtypes. African Americans tend to have more genetic variants compared to Caucasians; therefore, using genetic information to distinguish the disease subtypes for this group of people is relatively challenging, but we were able to identify two subtypes whose cardiac mechanics have statistically different distributions using the proposed process. The research gives a promising direction in using statistical methods to select genetic information and identify subgroups of diseases, which may inform the development and trial of novel targeted therapies

    Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Digitalis purpurea </it>is an important ornamental and medicinal plant. There is considerable interest in exploring its transcriptome.</p> <p>Results</p> <p>Through high-throughput 454 sequencing and subsequent assembly, we obtained 23532 genes, of which 15626 encode conserved proteins. We determined 140 unigenes to be candidates involved in cardiac glycoside biosynthesis. It could be grouped into 30 families, of which 29 were identified for the first time in <it>D. purpurea</it>. We identified 2660 mRNA-like npcRNA (mlncRNA) candidates, an emerging class of regulators, using a computational mlncRNA identification pipeline and 13 microRNA-producing unigenes based on sequence conservation and hairpin structure-forming capability. Twenty five protein-coding unigenes were predicted to be targets of these microRNAs. Among the mlncRNA candidates, only 320 could be grouped into 140 families with at least two members in a family. The majority of <it>D. purpurea </it>mlncRNAs were species-specific and many of them showed tissue-specific expression and responded to cold and dehydration stresses. We identified 417 protein-coding genes with regions significantly homologous or complementary to 375 mlncRNAs. It includes five genes involved in secondary metabolism. A positive correlation was found in gene expression between protein-coding genes and the homologous mlncRNAs in response to cold and dehydration stresses, while the correlation was negative when protein-coding genes and mlncRNAs were complementary to each other.</p> <p>Conclusions</p> <p>Through comprehensive transcriptome analysis, we not only identified 29 novel gene families potentially involved in the biosynthesis of cardiac glycosides but also characterized a large number of mlncRNAs. Our results suggest the importance of mlncRNAs in secondary metabolism and stress response in <it>D. purpurea</it>.</p

    NK cell exhaustion in the tumor microenvironment

    Get PDF
    Natural killer (NK) cells kill mutant cells through death receptors and cytotoxic granules, playing an essential role in controlling cancer progression. However, in the tumor microenvironment (TME), NK cells frequently exhibit an exhausted status, which impairs their immunosurveillance function and contributes to tumor immune evasion. Emerging studies are ongoing to reveal the properties and mechanisms of NK cell exhaustion in the TME. In this review, we will briefly introduce the maturation, localization, homeostasis, and cytotoxicity of NK cells. We will then summarize the current understanding of the main mechanisms underlying NK cell exhaustion in the TME in four aspects: dysregulation of inhibitory and activating signaling, tumor cell-derived factors, immunosuppressive cells, and metabolism and exhaustion. We will also discuss the therapeutic approaches currently being developed to reverse NK cell exhaustion and enhance NK cell cytotoxicity in the TME

    De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>American ginseng (<it>Panax quinquefolius </it>L.) is one of the most widely used herbal remedies in the world. Its major bioactive constituents are the triterpene saponins known as ginsenosides. However, little is known about ginsenoside biosynthesis in American ginseng, especially the late steps of the pathway.</p> <p>Results</p> <p>In this study, a one-quarter 454 sequencing run produced 209,747 high-quality reads with an average sequence length of 427 bases. <it>De novo </it>assembly generated 31,088 unique sequences containing 16,592 contigs and 14,496 singletons. About 93.1% of the high-quality reads were assembled into contigs with an average 8-fold coverage. A total of 21,684 (69.8%) unique sequences were annotated by a BLAST similarity search against four public sequence databases, and 4,097 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Based on the bioinformatic analysis described above, we found all of the known enzymes involved in ginsenoside backbone synthesis, starting from acetyl-CoA via the isoprenoid pathway. Additionally, a total of 150 cytochrome P450 (CYP450) and 235 glycosyltransferase unique sequences were found in the 454 cDNA library, some of which encode enzymes responsible for the conversion of the ginsenoside backbone into the various ginsenosides. Finally, one CYP450 and four UDP-glycosyltransferases were selected as the candidates most likely to be involved in ginsenoside biosynthesis through a methyl jasmonate (MeJA) inducibility experiment and tissue-specific expression pattern analysis based on a real-time PCR assay.</p> <p>Conclusions</p> <p>We demonstrated, with the assistance of the MeJA inducibility experiment and tissue-specific expression pattern analysis, that transcriptome analysis based on 454 pyrosequencing is a powerful tool for determining the genes encoding enzymes responsible for the biosynthesis of secondary metabolites in non-model plants. Additionally, the expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community that is interested in the molecular genetics and functional genomics of American ginseng.</p
    corecore