66,904 research outputs found

    Metric adjusted skew information

    Full text link
    We extend the concept of Wigner-Yanase-Dyson skew information to something we call ``metric adjusted skew information'' (of a state with respect to a conserved observable). This ``skew information'' is intended to be a non-negative quantity bounded by the variance (of an observable in a state) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova-Chentsov functions describing the possible quantum statistics is a Bauer simplex and determine its extreme points. We determine a particularly simple skew information, the ``lambda-skew information,'' parametrized by a lambda in (0,1], and show that the convex cone this family generates coincides with the set of all metric adjusted skew informations. Key words: Skew information, convexity, monotone metric, Morozova-Chentsov function, lambda-skew information.Comment: Edited the abstract and the introductio

    Inequalities for quantum skew information

    Full text link
    We study quantum information inequalities and show that the basic inequality between the quantum variance and the metric adjusted skew information generates all the multi-operator matrix inequalities or Robertson type determinant inequalities studied by a number of authors. We introduce an order relation on the set of functions representing quantum Fisher information that renders the set into a lattice with an involution. This order structure generates new inequalities for the metric adjusted skew informations. In particular, the Wigner-Yanase skew information is the maximal skew information with respect to this order structure in the set of Wigner-Yanase-Dyson skew informations. Key words and phrases: Quantum covariance, metric adjusted skew information, Robertson-type uncertainty principle, operator monotone function, Wigner-Yanase-Dyson skew information

    Metric adjusted skew information: Convexity and restricted forms of superadditivity

    Full text link
    We give a truly elementary proof of the convexity of metric adjusted skew information following an idea of Effros. We extend earlier results of weak forms of superadditivity to general metric adjusted skew informations. Recently, Luo and Zhang introduced the notion of semi-quantum states on a bipartite system and proved superadditivity of the Wigner-Yanase-Dyson skew informations for such states. We extend this result to general metric adjusted skew informations. We finally show that a recently introduced extension to parameter values 1<p2 1<p\le 2 of the WYD-information is a special case of (unbounded) metric adjusted skew information.Comment: An error in the literature is pointed ou

    Observation of a quenched moment of inertia in a rotating strongly interacting Fermi gas

    Full text link
    We make a model-independent measurement of the moment of inertia of a rotating, expanding strongly-interacting Fermi gas. Quenching of the moment of inertia is observed for energies both below and above the superfluid transition. This shows that a strongly interacting Fermi gas with angular momentum can support irrotational flow in both the superfluid and collisional normal fluid regimes.Comment: 4 pages 5 figure

    Generalized seniority for the shell model with realistic interactions

    Full text link
    The generalized seniority scheme has long been proposed as a means of dramatically reducing the dimensionality of nuclear shell model calculations, when strong pairing correlations are present. However, systematic benchmark calculations, comparing results obtained in a model space truncated according to generalized seniority with those obtained in the full shell model space, are required to assess the viability of this scheme. Here, a detailed comparison is carried out, for semimagic nuclei taken in a full major shell and with realistic interactions. The even-mass and odd-mass Ca isotopes are treated in the generalized seniority scheme, for generalized seniority v<=3. Results for level energies, orbital occupations, and electromagnetic observables are compared with those obtained in the full shell model space.Comment: 13 pages, 8 figures; published in Phys. Rev.
    corecore