10 research outputs found
Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency
Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, ānaiveā state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.Simons Foundation (Grant SFLIFE 286977)National Institutes of Health (U.S.) (Grant RO1-CA084198)National Science Foundation (U.S.). Graduate Research FellowshipJerome and Florence Brill Graduate Student Fellowshi
Molecular Criteria for Defining the Naive Human Pluripotent State.
Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate inĀ vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency.This study was supported by grants from the Simons Foundation (SFLIFE #286977 to R.J) and in part by the NIH (RO1-CA084198) to R.J., from the Swiss National Science Foundation and the European Research Council (KRABnKAP, No. 268721) to D.T. The work in J.R.Eās laboratory was supported by the Howard Hughes Medical Institute and Gordon and Betty Moore Foundation (GBMF3034) and the Mary K. Chapman Foundation. J.R.E is an Investigator of the Howard Hughes Medical Institute. T.W.T. is supported by a Sir Henry Wellcome Postdoctoral Fellowship (098889/Z/12/Z), J.P. by a Foundation Bettencourt Award and by the Association pour la Recherche sur le Cancer (ARC), M.I. by a postdoctoral training grant from the Fonds de la Recherche en SantĆ© du QuĆ©bec. R.J. is co-founder of Fate Therapeutics and an adviser to Stemgent.This is the final version of the article. It first appeared from Cell Press via http://www.cell.com/cell-stem-cell/abstract/S1934-5909(16)30161-
Microcephaly Modeling of Kinetochore Mutation Reveals a Brain-Specific Phenotype
Most genes mutated in microcephaly patients are expressed ubiquitously, and yet the brain is the only major organ compromised in most patients. Why the phenotype remains brain specific is poorly understood. In this study, we used in vitro differentiation of human embryonic stem cells to monitor the effect of a point mutation in kinetochore null protein 1 (KNL1; CASC5), identified in microcephaly patients, during in vitro brain development. We found that neural progenitors bearing a patient mutation showed reduced KNL1 levels, aneuploidy, and an abrogated spindle assembly checkpoint. By contrast, no reduction of KNL1 levels or abnormalities was observed in fibroblasts and neural crest cells. We established that the KNL1 patient mutation generates an exonic splicing silencer site, which mainly affects neural progenitors because of their higher levels of splicing proteins. Our results provide insight into the brain-specific phenomenon, consistent with microcephaly being the only major phenotype of patients bearing KNL1 mutation.Simons Foundation. Postdoctoral FellowshipInternational Rett Syndrome Foundation (Postdoctoral Fellowship)Brain & Behavior Research Foundation (Young Investigator Grant)National Institutes of Health (U.S.) (grant HD 045022)National Institutes of Health (U.S.) (grant R37-CA084198)National Institutes of Health (U.S.) (grant 1U19AI131135-01
Genome-wide CRISPR screen for Zika virus resistance in human neural cells
Zika virus (ZIKV) is a neurotropic and neurovirulent arbovirus that has severe detrimental impact on the developing human fetal brain. To date, little is known about the factors required for ZIKV infection of human neural cells. We identified ZIKV host genes in human pluripotent stem cell (hPSC)-derived neural progenitors (NPs) using a genome-wide CRISPR-Cas9 knockout screen. Mutations of host factors involved in heparan sulfation, endocytosis, endoplasmic reticulum processing, Golgi function, and interferon activity conferred resistance to infection with the Uganda strain of ZIKV and a more recent North American isolate. Host genes essential for ZIKV replication identified in human NPs also provided a low level of protection against ZIKV in isogenic human astrocytes. Our findings provide insights into host-dependent mechanisms for ZIKV infection in the highly vulnerable human NP cells and identify molecular targets for potential therapeutic intervention. Keywords: Zika virus; neural progenitors; CRISPR screen; fetal CNS infection; human pluri; potent stem cellsNational Institutes of Health (U.S.) (Grant R01 MH104610)National Institutes of Health (U.S.) (Grant R01 NS088538)National Institutes of Health (U.S.) (Grant U19 AI131135)National Institutes of Health (U.S.) (Grant R33 AI100190)Simons Foundation (Grant SFARI 204106
Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening
Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional "primed" hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ā¼3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements
Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases
Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organā and organ-immuneāspecific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinsonās disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cellāderived cerebral MPS in a systemically circulated common culture medium containing CD4 regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivoālike behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.
MeCP2 links heterochromatin condensates and neurodevelopmental disease
Ā© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1ā3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3ā5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome
OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naĆÆve and primed pluripotent states in human
AbstractUnderstanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naĆÆve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naĆÆve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naĆÆve and primed hESCs.</jats:p