13 research outputs found

    Improving and accelerating the differentiation and functional maturation of human stem cell-derived neurons: role of extracellular calcium and GABA

    Get PDF
    Neurons differentiated from pluripotent stem cells using established neural culture conditions often exhibit functional deficits. Recently, we have developed enhanced media which both synchronize the neurogenesis of pluripotent stem cell-derived neural progenitors and accelerate their functional maturation; together these media are termed SynaptoJuice. This pair of media are pro-synaptogenic and generate authentic, mature synaptic networks of connected forebrain neurons from a variety of induced pluripotent and embryonic stem cell lines. Such enhanced rate and extent of synchronized maturation of pluripotent stem cell-derived neural progenitor cells generates neurons which are characterized by a relatively hyperpolarized resting membrane potential, higher spontaneous and induced action potential activity, enhanced synaptic activity, more complete development of a mature inhibitory GABAA receptor phenotype and faster production of electrical network activity when compared to standard differentiation media. This entire process ā€“ from pre-patterned neural progenitor to active neuron ā€“ takes 3 weeks or less, making it an ideal platform for drug discovery and disease modelling in the fields of human neurodegenerative and neuropsychiatric disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease and Schizophrenia

    Efficient intravenous tumor targeting using the Ī±vĪ²6 integrin-selective precision virotherapy Ad5NULL-A20

    Get PDF
    We previously developed a refined, tumor-selective adenovirus, Ad5NULL-A20, harboring tropism ablating mutations in each major capsid protein, to ablate all native means of infection. We incorporated a 20-mer peptide (A20) in the fiber knob for selective infection via Ī±vĪ²6 integrin, a marker of aggressive epithelial cancers. Methods: To ascertain the selectivity of Ad5NULL-A20 for Ī±vĪ²6-positive tumor cell lines of pancreatic and breast cancer origin, we performed reporter gene and cell viability assays. Biodistribution of viral vectors in mice harboring xenografts with low, medium, and high Ī±vĪ²6 levels was quantified by qPCR for viral genomes 48 h post intravenous administration. Results: Ad5NULL-A20 vector transduced cells in an Ī±vĪ²6-selective manner, whilst cell killing mediated by oncolytic Ad5NULL-A20 was Ī±vĪ²6-selective. Biodistribution analysis following intravenous administration into mice bearing breast cancer xenografts demonstrated that Ad5NULL-A20 resulted in significantly reduced liver accumulation coupled with increased tumor accumulation compared to Ad5 in all three models, with tumor-to-liver ratios improved as a function of Ī±vĪ²6 expression. Conclusions: Ad5NULL-A20-based virotherapies efficiently target Ī±vĪ²6-integrin-positive tumors following intravenous administration, validating the potential of Ad5NULL-A20 for systemic applications, enabling tumor-selective overexpression of virally encoded therapeutic transgenes

    3D imaging of colorectal cancer organoids identifies responses to Tankyrase inhibitors

    Get PDF
    Aberrant activation of the Wnt signalling pathway is required for tumour initiation and survival in the majority of colorectal cancers. The development of inhibitors of Wnt signalling has been the focus of multiple drug discovery programs targeting colorectal cancer and other malignancies associated with aberrant pathway activation. However, progression of new clinical entities targeting the Wnt pathway has been slow. One challenge lies with the limited predictive power of 2D cancer cell lines because they fail to fully recapitulate intratumoural phenotypic heterogeneity. In particular, the relationship between 2D cancer cell biology and cancer stem cell function is poorly understood. By contrast, 3D tumour organoids provide a platform in which complex cell-cell interactions can be studied. However, complex 3D models provide a challenging platform for the quantitative analysis of drug responses of therapies that have differential effects on tumour cell subpopulations. Here, we generated tumour organoids from colorectal cancer patients and tested their responses to inhibitors of Tankyrase (TNKSi) which are known to modulate Wnt signalling. Using compounds with 3 orders of magnitude difference in cellular mechanistic potency together with image-based assays, we demonstrate that morphometric analyses can capture subtle alterations in organoid responses to Wnt inhibitors that are consistent with activity against a cancer stem cell subpopulation. Overall our study highlights the value of phenotypic readouts as a quantitative method to asses drug-induced effects in a relevant preclinical model

    A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications

    Get PDF
    Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector ā€œChAdOx1ā€ in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector

    Anti-Folate Receptor alpha-directed Antibody Therapies Restrict the Growth of Triple Negative Breast Cancer

    Get PDF
    PURPOSE: Highly-aggressive triple negative breast cancers (TNBCs) lack validated therapeutic targets and have high risk of metastatic disease. Folate Receptor alpha (FRĪ±) is a central mediator of cell growth regulation that could serve as an important target for cancer therapy. EXPERIMENTAL DESIGN: We evaluated FRĪ± expression in breast cancers by genomic (N = 3414) and immunohistochemical (N = 323) analyses and its association with clinical parameters and outcomes. We measured the functional contributions of FRĪ± in TNBC biology by RNA interference and the anti-tumor functions of an antibody recognizing FRĪ± (MOv18-IgG1), in vitro and in human TNBC xenograft models. RESULTS: FRĪ± is overexpressed in significant proportions of aggressive basal like/TNBC tumors, and in post-neoadjuvant chemotherapy-residual disease associated with a high risk of relapse. Expression is associated with worse overall survival. TNBCs show dysregulated expression of thymidylate synthase, folate hydrolase 1 and methylenetetrahydrofolate reductase, involved in folate metabolism. RNA interference to deplete FRĪ± decreased Src and ERK signaling and resulted in reduction of cell growth. An anti-FRĪ± antibody (MOv18-IgG1) conjugated with a Src inhibitor significantly restricted TNBC xenograft growth. Moreover, MOv18-IgG1 triggered immune-dependent cancer cell death in vitro by human volunteer and breast cancer patient immune cells, and significantly restricted orthotopic and patient-derived xenograft growth. CONCLUSIONS: FRĪ± is overexpressed in high-grade TNBC and post-chemotherapy residual tumors. It participates in cancer cell signaling and presents a promising target for therapeutic strategies such as antibody-drug conjugates, or passive immunotherapy priming Fc-mediated anti-tumor immune cell responses

    Forced cell-cycle exit and modulation of GABAA, CREB and GSK3Ī² signaling promote functional maturation of induced pluripotent stem cell-derived neurons

    No full text
    Although numerous protocols have been developed for differentiation of neurons from a variety of pluripotent stem cells, most have concentrated on being able to specify effectively appropriate neuronal sub-types and few have been designed to enhance or accelerate functional maturity. Of those that have, most employ time-courses of functional maturation which are rather protracted, and none have fully characterized all aspects of neuronal function, from spontaneous action potential generation through to post-synaptic receptor maturation. Here, we describe a simple protocol which employs the sequential addition of just two supplemented media which have been formulated to separate the two key phases of neural differentiation - the neurogenesis and synaptogenesis - each characterized by different signaling requirements. Employing these media, this new protocol synchronised neurogenesis and enhanced the rate of maturation of pluripotent stem cell-derived neural precursors. Neurons differentiated using this protocol exhibited large cell capacitance with relatively hyperpolarized resting membrane potentials, moreover they exhibited augmented: i) spontaneous electrical activity; ii) regenerative induced action potential train activity; iii) Na+ current availability, and; iv) synaptic currents. This was accomplished by rapid and uniform development of a mature, inhibitory GABAA receptor phenotype which was demonstrated by Ca2+ imaging and the ability of GABAA receptor blockers to evoke seizurogenic network activity in multi-electro array recordings. Furthermore, since this protocol can exploit expanded and frozen pre-patterned neural progenitors to deliver mature neurons within 21 days, it is both scalable and transferable to high-throughput platforms for the use in functional screens

    Targeting TRIM37-driven centrosome dysfunction in 17q23-amplified breast cancer

    No full text
    Genomic instability is a hallmark of cancer, and has a central role in the initiation and development of breast cancer1,2. The success of poly-ADP ribose polymerase inhibitors in the treatment of breast cancers that are deficient in homologous recombination exemplifies the utility of synthetically lethal genetic interactions in the treatment of breast cancers that are driven by genomic instability3. Given that defects in homologous recombination are present in only a subset of breast cancers, there is a need to identify additional driver mechanisms for genomic instability and targeted strategies to exploit these defects in the treatment of cancer. Here we show that centrosome depletion induces synthetic lethality in cancer cells that contain the 17q23 amplicon, a recurrent copy number aberration that defines about 9% of all primary breast cancer tumours and is associated with high levels of genomic instability4-6. Specifically, inhibition of polo-like kinaseĀ 4 (PLK4) using small molecules leads to centrosome depletion, which triggers mitotic catastrophe in cells that exhibit amplicon-directed overexpression of TRIM37. To explain this effect, we identify TRIM37 as a negative regulator of centrosomal pericentriolar material. In 17q23-amplified cells that lack centrosomes, increased levels of TRIM37 block the formation of foci that comprise pericentriolar material-these foci are structures with a microtubule-nucleating capacity that are required for successful cell division in the absence of centrosomes. Finally, we find thatĀ the overexpression of TRIM37 causes genomic instability by delaying centrosome maturation and separation at mitotic entry, and thereby increases the frequency of mitotic errors. Collectively, these findings highlight TRIM37-dependent genomic instability as a putative driver event in 17q23-amplified breast cancer and provide a rationale for the use of centrosome-targeting therapeutic agents in treating these cancers

    Insights into pancreatic Ī² cell energy metabolism using rodent Ī² cell models

    No full text
    Abstract Background: Mitochondrial diabetes is primarily caused by Ī²-cell failure, a cell type whose unique properties are important in pathogenesis. Methods: By reducing glucose, we induced energetic stress in two rodent Ī²-cell models to assess effects on cellular function. Results: Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy. Conclusions: Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting Ī²-cell mitochondrial function
    corecore