4,524 research outputs found
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
A quantum system will stay near its instantaneous ground state if the
Hamiltonian that governs its evolution varies slowly enough. This quantum
adiabatic behavior is the basis of a new class of algorithms for quantum
computing. We test one such algorithm by applying it to randomly generated,
hard, instances of an NP-complete problem. For the small examples that we can
simulate, the quantum adiabatic algorithm works well, and provides evidence
that quantum computers (if large ones can be built) may be able to outperform
ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a
shorter version of this article appeared in the April 20, 2001 issue of
Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47
Aging dynamics of ferromagnetic and reentrant spin glass phases in stage-2 CuCCl graphite intercalation compound
Aging dynamics of a reentrant ferromagnet stage-2
CuCoCl graphite intercalation compound has been studied
using DC magnetic susceptibility. This compound undergoes successive
transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a
characteristic peak at below . The peak time as a
function of temperature shows a local maximum around 5.5 K, reflecting a
frustrated nature of the ferromagnetic phase. It drastically increases with
decreasing temperature below . The spin configuration imprinted at the
stop and wait process at a stop temperature () during the
field-cooled aging protocol, becomes frozen on further cooling. On reheating,
the memory of the aging at is retrieved as an anomaly of the
thermoremnant magnetization at . These results indicate the occurrence
of the aging phenomena in the ferromagnetic phase () as well
as in the reentrant spin glass phase ().Comment: 9 pages, 9 figures; submitted to Physical Review
RFI Identification and Mitigation Using Simultaneous Dual Station Observations
RFI mitigation is a critically important issue in radio astronomy using
existing instruments as well as in the development of next-generation radio
telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA
involve multiple stations with spacings of up to a few thousands of kilometers
and thus can exploit the drastically different RFI environments at different
stations. As demonstrator observations and analysis for SKA-like instruments,
and to develop RFI mitigation schemes that will be useful in the near term, we
recently conducted simultaneous observations with Arecibo Observatory and the
Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and
using the mostly uncorrelated RFI between the two sites to excise RFI from
several generic kinds of measurements such as giant pulses from Crab-like
pulsars and weak HI emission from galaxies in bands heavily contaminated by
RFI. This paper presents observations, analysis, and RFI identification and
excision procedures that are effective for both time series and spectroscopy
applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for
publication in Radio Scienc
Inverting graphs of rectangular matrices
AbstractThis paper addresses the question of determining the class of rectangular matrices having a given graph as a row or column graph. We also determine equivalent conditions on a given pair of graphs in order for them to be the row and column graphs of some rectangular matrix. In connection with these graph inversion problems we discuss the concept of minimal inverses. This concept turns out to have two different forms in the case of one-graph inversion. For the two-graph case we present a method of determining when an inverse is minimal. Finally we apply the two-graph theorem to a class of energy related matrices
Effect of random disorder and spin frustration on the reentrant spin glass phase and ferromagnetic phase in stage-2 Cu_{0.93}Co_{0.07}Cl_{2} graphite intercalation compound near the multicritical point
Stage-2 CuCoCl graphite intercalation compound
magnetically behaves like a reentrant ferromagnet near the multicritical point
(). It undergoes two magnetic phase transitions at
( K) and ( K). The static
and dynamic nature of the ferromagnetic and reentrant spin glass phase has been
studied using DC and AC magnetic susceptibility. Characteristic memory
phenomena of the DC susceptibility are observed at and . The
nonlinear AC susceptibility has a positive local maximum at
, and a negative local minimum at . The relaxation time
between and shows a critical slowing down: with and sec. The
influence of the random disorder on the critical behavior above is
clearly observed: , , and . The
exponent of is far from that of 3D Heisenberg model.Comment: 15 pages, 16 figures, submitted to Phys. Rev.
Energy spectra of finite temperature superfluid helium-4 turbulence
A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k?5/3 regime, a sub-turbulence, low Reynolds number, fluctuating k?2.2 regime, and an intermediate, viscous k?6 range that connects the two. The k?2.2 regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k?3 range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k?5/3 regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k?1 range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale
Scaling Law and Aging Phenomena in the Random Energy Model
We study the effect of temperature shift on aging phenomena in the Random
Energy Model (REM). From calculation on the correlation function and simulation
on the Zero-Field-Cooled magnetization, we find that the REM satisfies a
scaling relation even if temperature is shifted. Furthermore, this scaling
property naturally leads to results obtained in experiment and the droplet
theory.Comment: 8 pages, 7 figures, to be submitted to J. Phys. Soc. Jp
Venus Interior Structure Mission (VISM): Establishing a Seismic Network on Venus
Magellan radar data show the surface of Venus to contain a wide range of geologic features (large volcanoes, extensive rift valleys, etc.). Although networks of interconnecting zones of deformation are identified, a system of spreading ridges and subduction zones like those that dominate the tectonic style of the Earth do not appear to be present. In addition, the absence of a mantle low-viscosity zone suggests a strong link between mantle dynamics and the surface. As a natural follow-on to the Magellan mission, establishing a network of seismometers on Venus will provide detailed quantitative information on the large scale interior structure of the planet. When analyzed in conjunction with image, gravity, and topography information, these data will aid in constraining mechanisms that drive surface deformation
Aging dynamics in reentrant ferromagnet: CuCoCl-FeCl graphite bi-intercalation compound
Aging dynamics of a reentrant ferromagnet
CuCoCl-FeCl graphite bi-intercalation compound has
been studied using AC and DC magnetic susceptibility. This compound undergoes
successive transitions at the transition temperatures ( K) and
( K). The relaxation rate exhibits a characteristic
peak at close to a wait time below , indicating that
the aging phenomena occur in both the reentrant spin glass (RSG) phase below
and the ferromagnetic (FM) phase between and . The
relaxation rate () in the FM phase
exhibits two peaks around and a time much shorter than under
the positive -shift aging, indicating a partial rejuvenation of domains. The
aging state in the FM phase is fragile against a weak magnetic-field
perturbation. The time () dependence of around is well approximated by a stretched exponential relaxation:
. The exponent depends on
, , and . The relaxation time () exhibits a
local maximum around 5 K, reflecting a chaotic nature of the FM phase. It
drastically increases with decreasing temperature below .Comment: 16 pages,16 figures, submitted to Physical Review
Brown-York Energy and Radial Geodesics
We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal
energies for round spheres in spherically symmetric space-times from the point
of view of radial geodesics. In particular, we show that the relation between
the BY and MS energies is precisely analogous to that between the
(relativistic) energy E of a geodesic and the effective (Newtonian) energy
E_{eff} appearing in the geodesic equation, thus shedding some light on the
relation between the two. Moreover, for Schwarzschild-like metrics we establish
a general relationship between the BY energy and the geodesic effective
potential which explains and generalises the recently observed connection
between negative BY energy and the repulsive behaviour of geodesics in the
Reissner-Nordstrom metric. We also comment on the extension of this connection
between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ
- …