83 research outputs found
Association of fish consumption and dietary intake of marine n-3 PUFA with myocardial infarction in a prospective Danish cohort study
AbstractSeveral studies have investigated the potential benefits of marine n-3 PUFA in CVD, generally suggesting a lower risk of CHD. However, recent trials have questioned these results. This study investigated the association of fish consumption with dietary intake of marine n-3 PUFA with incident myocardial infarction (MI). In a Danish cohort study, 57 053 subjects between 50 and 64 years of age were enrolled from 1993 to 1997. From national registries, we identified all cases of incident MI. Dietary fish consumption was assessed using a semi-quantitative food questionnaire, including twenty-six questions regarding fish intake. In addition, we calculated the intake of total and individual marine n-3 PUFA. During a median follow-up of 17·0 years, we identified 3089 cases of incident MI. For both men and women, a high intake of fatty fish was inversely related to incident MI. Thus, when comparing the highest and the lowest quintile of fatty fish intake, we found a 12 % lower relative risk of MI in men (hazard ratio (HR) 0·88; 95 % CI 0·77, 1·00) and a 22 % lower relative risk in women (HR 0·78; 95 % CI 0·63, 0·96) after adjustments. For women, similar associations were observed for individual and total marine n-3 PUFA. In contrast, intake of lean fish was not associated with MI. In conclusion, incident MI was inversely related to a high intake of fatty fish, but not lean fish. However, test for trends across quintiles was not statistically significant. In general, this study supports the view that consumption of fatty fish may protect against MI.</jats:p
Substitution of Fish for Red Meat or Poultry and Risk of Ischemic Stroke
We investigated the risk of ischemic stroke and its subtypes when red meat or poultry was substituted with fish. A total of 57,053 participants aged 50⁻65 years at baseline were included in the Danish Diet, Cancer and Health study. All participants filled in a food-frequency questionnaire at recruitment. Potential ischemic stroke cases were identified by linkage to the Danish National Patient Register, and all cases were validated and subclassified. Substitutions were investigated as 150 g/week of fish for 150 g/week of red meat or of poultry using multivariable Cox proportional hazard regression models. During 13.5 years of follow-up, 1879 participants developed an ischemic stroke. Replacing red meat or poultry with fish was not associated with the rate of total ischemic stroke, but there was a statistically significant lower rate of large artery atherosclerosis when fish replaced processed (hazard ratio (HR): 0.78; 95% confidence interval (CI): 0.67; 0.90) and unprocessed (HR: 0.87; 95% CI: 0.75; 0.99) red meat. A statistically significant higher rate of cardioembolism was found when poultry was replaced by total fish (HR: 1.42; 95% CI: 1.04; 1.93). When fatty fish replaced unprocessed red meat, a statistically significant lower rate of small-vessel occlusion was found (HR: 0.88; 95% CI: 0.77; 0.99). In conclusion, replacing red meat with fish was not associated with risk of total ischemic stroke but was associated with a lower risk of subtypes of ischemic stroke
Early influences on cardiovascular and renal development
The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
The Generation R Study: design and cohort update 2010
The Generation R Study is a population-based prospective cohort study from fetal life until young adulthood. The study is designed to identify early environmental and genetic causes of normal and abnormal growth, development and health during fetal life, childhood and adulthood. The study focuses on four primary areas of research: (1) growth and physical development; (2) behavioural and cognitive development; (3) diseases in childhood; and (4) health and healthcare for pregnant women and children. In total, 9,778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. General follow-up rates until the age of 4 years exceed 75%. Data collection in mothers, fathers and preschool children included questionnaires, detailed physical and ultrasound examinations, behavioural observations, and biological samples. A genome wide association screen is available in the participating children. Regular detailed hands on assessment are performed from the age of 5 years onwards. Eventually, results forthcoming from the Generation R Study have to contribute to the development of strategies for optimizing health and healthcare for pregnant women and children
- …