16,159 research outputs found

    Ballerina - Pirouettes in Search of Gamma Bursts

    Get PDF
    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.Comment: A&AS in press, proceedings of the Workshop "Gamma Ray Bursts in the Afterglow Era" in Rome, November 199

    A new method to detect solar-like oscillations at very low S/N using statistical significance testing

    Full text link
    We introduce a new method to detect solar-like oscillations in frequency power spectra of stellar observations, under conditions of very low signal to noise. The Moving-Windowed-Power-Search, or MWPS, searches the power spectrum for signatures of excess power, over and above slowly varying (in frequency) background contributions from stellar granulation and shot or instrumental noise. We adopt a false-alarm approach (Chaplin et al. 2011) to ascertain whether flagged excess power, which is consistent with the excess expected from solar-like oscillations, is hard to explain by chance alone (and hence a candidate detection). We apply the method to solar photometry data, whose quality was systematically degraded to test the performance of the MWPS at low signal-to-noise ratios. We also compare the performance of the MWPS against the frequently applied power-spectrum-of-power-spectrum (PSxPS) detection method. The MWPS is found to outperform the PSxPS method.Comment: 10 pages, 7 figures, accepted for publication in MNRAS, Added reference

    Optical and near-infrared observations of the GRB 970616 error box

    Get PDF
    We report on near-infrared and optical observations of the GRB 970616 error box and of the X-ray sources discovered by ASCA and ROSAT in the region. No optical transient was found either within the IPN band or in the X-ray error boxes, similarly to other bursts, and we suggest that either considerable intrinsic absorption was present (like GRB 970828) or that the optical transient displayed a very fast decline (like GRB 980326 and GRB 980519).Comment: 2 pages with one encapsulated PostScript figure included. Uses Astronomy & Astrophysics LaTeX macros. Accepted for publication in Astronomy & Astrophysics Supplement Serie

    K2P2^2 - A photometry pipeline for the K2 mission

    Full text link
    With the loss of a second reaction wheel, resulting in the inability to point continuously and stably at the same field of view, the NASA Kepler satellite recently entered a new mode of observation known as the K2 mission. The data from this redesigned mission present a specific challenge; the targets systematically drift in position on a ~6 hour time scale, inducing a significant instrumental signal in the photometric time series --- this greatly impacts the ability to detect planetary signals and perform asteroseismic analysis. Here we detail our version of a reduction pipeline for K2 target pixel data, which automatically: defines masks for all targets in a given frame; extracts the target's flux- and position time series; corrects the time series based on the apparent movement on the CCD (either in 1D or 2D) combined with the correction of instrumental and/or planetary signals via the KASOC filter (Handberg & Lund 2014), thus rendering the time series ready for asteroseismic analysis; computes power spectra for all targets, and identifies potential contaminations between targets. From a test of our pipeline on a sample of targets from the K2 campaign 0, the recovery of data for multiple targets increases the amount of potential light curves by a factor 10{\geq}10. Our pipeline could be applied to the upcoming TESS (Ricker et al. 2014) and PLATO 2.0 (Rauer et al. 2013) missions.Comment: 14 pages, 20 figures, Accepted for publication in The Astrophysical Journal (Apj

    Spatial incoherence of solar granulation: a global analysis using BiSON 2B data

    Get PDF
    A poor understanding of the impact of convective turbulence in the outer layers of the Sun and Sun-like stars challenges the advance towards an improved understanding of their internal structure and dynamics. Assessing and calibrating these effects is therefore of great importance. Here we study the spatial coherence of granulation noise and oscillation modes in the Sun, with the aim of exploiting any incoherence to beat-down observed granulation noise, hence improving the detection of low-frequency p-modes. Using data from the BiSON 2B instrument, we assess the coherence between different atmospheric heights and between different surface regions. We find that granulation noise from the different atmospheric heights probed is largely incoherent; frequency regions dominated by oscillations are almost fully coherent. We find a randomised phase difference for the granulation noise, and a near zero difference for the evanescent oscillations. A reduction of the incoherent granulation noise is shown by application of the cross-spectrum.Comment: 8 pages, 7 figures, MNRAS in pres

    Discovery of a new INTEGRAL source: IGR J19140+0951

    Full text link
    IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the INTEGRAL satellite in March 2003. We report the details of the discovery, using an improved position for the analysis. We have performed a simultaneous study of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two different states. From the results of our analysis we propose that IGR J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A

    Effective slip boundary conditions for flows over nanoscale chemical heterogeneities

    Full text link
    We study slip boundary conditions for simple fluids at surfaces with nanoscale chemical heterogeneities. Using a perturbative approach, we examine the flow of a Newtonian fluid far from a surface described by a heterogeneous Navier slip boundary condition. In the far-field, we obtain expressions for an effective slip boundary condition in certain limiting cases. These expressions are compared to numerical solutions which show they work well when applied in the appropriate limits. The implications for experimental measurements and for the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure

    Re-evaluation of cosmic ray cutoff terminology

    Get PDF
    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies
    corecore