5 research outputs found
Experimental analysis of oil flow and drag torque generation in disengaged wet clutches
Abstract Fundamental knowledge of the oil flow in a disengaged wet clutch is essential for optimizing the cooling performance and the drag losses. However, no fundamental information on the oil flow and drag torque generation is available for dip-lubricated wet clutches. Therefore, the oil flow and drag torque generation in the sub-millimeter gap of a dip-lubricated wet clutch was experimentally investigated for three practically relevant oil levels. To enable optical access to the gap, transparent components were used. Further, a high-speed camera was used to capture the oil flow in the gap and grooving. Independent of the set oil level, the gap is oil-filled at low differential speeds, resulting in a single-phase flow. The drag torque increases approximately linearly with increasing differential speed due to the fluid shearing. In certain regions of the waffle grooving, air bubbles form locally. The air bubbles preferably occur in the grooves oriented in the radial direction, while the grooves oriented in the peripheral direction are filled with oil. Above a certain differential speed, the oil is continuously displaced from the gap, starting from the inside, due to the increasing centrifugal force. Consequently, the drag torque increases in a degressive manner until a maximum value is finally reached. The ongoing displacement of oil from the gap eventually results in a decrease in the drag torque. A steady drag torque is generated only when the oil is almost entirely displaced from the gap. Since the oil displacement from the gap already commences at a low differential speed, the cooling performance is limited for dip-lubricated wet clutches. The continuous displacement of oil from the gap can be held up, among other things, by increasing the oil level
A methodology for image-based measurement of plate movement in disengaged wet clutches
Abstract The drag loss behavior of a disengaged wet clutch is influenced, among other things, by the movement of the plates. Therefore, knowledge about the plate movement is essential for investigating and optimizing the drag loss behavior. This paper presents a methodology for image-based measurement of plate movement in disengaged wet clutches. A drag torque test rig is equipped with a camera to create the image series. The oil displacement from the measuring zone is crucial to obtain permanent optical access to the clutch pack. The rough plate positions are determined by segmentation using thresholding and template matching. Using the Canny edge detector significantly improves the accuracy of the position evaluation. The plate positions are finally converted into a metric unit based on the real plate thicknesses. The clearances are calculated from the determined positions of two adjacent plates. In the ideal case, an evaluation accuracy in the range of a few micrometers can be achieved. The image evaluation methodology is universally applicable to different clutch sizes, friction systems, plate types, and plate numbers. The methodology enables researchers to generate fundamental knowledge and derive design guidelines based on this, for example. In the development phase, it can also be used to optimize the design and operating parameters
Identification and Validation of Linear Friction Models Using ANOVA and Stepwise Regression
For wet disk clutches, the energy input is strongly influenced by its friction behavior. However, the friction behavior cannot be simulated and therefore is mostly derived from experimental data for specific clutch systems. This paper presents a new approach for the identification and validation of linear friction models using analysis of variance (ANOVA) and stepwise regression. Therefore, we use experimental data of three different friction systems with paper- and carbon-based friction lining. The designed experiments support an efficient parameter-based analysis of the friction behavior. The obtained models can be used as an input for thermal simulations, for example, but can also support a better understanding of the main influencing factors and are applicable to various friction systems. For validation, the obtained models are applied to measured data. A good correspondence between the simulated and measured friction behavior can be shown for speeds in the investigated operating range. The presented procedure can be easily adapted, for different factors and operation modes, as well as other applications
Identification and Validation of Linear Friction Models Using ANOVA and Stepwise Regression
For wet disk clutches, the energy input is strongly influenced by its friction behavior. However, the friction behavior cannot be simulated and therefore is mostly derived from experimental data for specific clutch systems. This paper presents a new approach for the identification and validation of linear friction models using analysis of variance (ANOVA) and stepwise regression. Therefore, we use experimental data of three different friction systems with paper- and carbon-based friction lining. The designed experiments support an efficient parameter-based analysis of the friction behavior. The obtained models can be used as an input for thermal simulations, for example, but can also support a better understanding of the main influencing factors and are applicable to various friction systems. For validation, the obtained models are applied to measured data. A good correspondence between the simulated and measured friction behavior can be shown for speeds in the investigated operating range. The presented procedure can be easily adapted, for different factors and operation modes, as well as other applications
Influence of Water Contamination, Iron Particles, and Energy Input on the NVH Behavior of Wet Clutches
The driving comfort and safety of the automotive powertrain are significantly related to the performance, lifetime, and functionality of the lubricant. The presented study focuses on investigating the performance loss of the lubricant due to water contamination resulting from environmental influences and iron particles originating from the wear of different machine elements. The main purpose is to determine critical factors that contribute to the degradation of the lubricant, and increase the tendency to NVH behavior, leading to adverse comfort losses to the respective user. Therefore, this performance loss is evaluated by test rig-based analysis of the friction behavior of wet clutches. Due to physical adsorption, a significant impact of water and iron contamination on the degradation of the lubricant is found, while the influence of the energy input is secondary