4,912 research outputs found

    Massively Parallel Computing and the Search for Jets and Black Holes at the LHC

    Full text link
    Massively parallel computing at the LHC could be the next leap necessary to reach an era of new discoveries at the LHC after the Higgs discovery. Scientific computing is a critical component of the LHC experiment, including operation, trigger, LHC computing GRID, simulation, and analysis. One way to improve the physics reach of the LHC is to take advantage of the flexibility of the trigger system by integrating coprocessors based on Graphics Processing Units (GPUs) or the Many Integrated Core (MIC) architecture into its server farm. This cutting edge technology provides not only the means to accelerate existing algorithms, but also the opportunity to develop new algorithms that select events in the trigger that previously would have evaded detection. In this article we describe new algorithms that would allow to select in the trigger new topological signatures that include non-prompt jet and black hole--like objects in the silicon tracker.Comment: 15 pages, 11 figures, submitted to NIM

    KamLAND Bounds on Solar Antineutrinos and neutrino transition magnetic moments

    Get PDF
    We investigate the possibility of detecting solar electron antineutrinos with the KamLAND experiment. These electron antineutrinos are predicted by spin-flavor oscillations at a significant rate even if this mechanism is not the leading solution to the SNP. KamLAND is sensitive to antineutrinos originated from solar 8{}^8B neutrinos. From KamLAND negative results after 145 days of data taking, we obtain model independent limits on the total flux of solar electron antineutrinos $\Phi({}^8 B)< 1.1-3.5\times 10^4 cm^{-2}\ s^{-1},morethanoneorderofmagnitudesmallerthanexistinglimits,andontheirappearanceprobability, more than one order of magnitude smaller than existing limits, and on their appearance probability P<0.15%(95antineutrinoproductionbyspinflavorprecession,thisupperboundimpliesanupperlimitontheproductoftheintrinsicneutrinomagneticmomentandthevalueofthesolarmagneticfield (95% CL). Assuming a concrete model for antineutrino production by spin-flavor precession, this upper bound implies an upper limit on the product of the intrinsic neutrino magnetic moment and the value of the solar magnetic field \mu B< 2.3\times 10^{-21}MeV95LMA MeV 95% CL (for LMA (\Delta m^2, \tan^2\theta)values).Limitsonneutrinotransitionmomentsarealsoobtained.Forrealisticvaluesofotherastrophysicalsolarparameterstheseupperlimitswouldimplythattheneutrinomagneticmomentisconstrainedtobe,inthemostconservativecase, values). Limits on neutrino transition moments are also obtained. For realistic values of other astrophysical solar parameters these upper limits would imply that the neutrino magnetic moment is constrained to be, in the most conservative case, \mu\lsim 3.9\times 10^{-12} \mu_B(95CL)forarelativelysmallfield (95% CL) for a relatively small field B= 50kG.Forhighervaluesofthemagneticfieldweobtain: kG. For higher values of the magnetic field we obtain: \mu\lsim 9.0\times 10^{-13} \mu_Bforfield for field B= 200kGand kG and \mu\lsim 2.0\times 10^{-13} \mu_Bforfield for field B= 1000$ kG at the same statistical significance.Comment: 13 pages, 2 figure

    First Evaluation of the CPU, GPGPU and MIC Architectures for Real Time Particle Tracking based on Hough Transform at the LHC

    Full text link
    Recent innovations focused around {\em parallel} processing, either through systems containing multiple processors or processors containing multiple cores, hold great promise for enhancing the performance of the trigger at the LHC and extending its physics program. The flexibility of the CMS/ATLAS trigger system allows for easy integration of computational accelerators, such as NVIDIA's Tesla Graphics Processing Unit (GPU) or Intel's \xphi, in the High Level Trigger. These accelerators have the potential to provide faster or more energy efficient event selection, thus opening up possibilities for new complex triggers that were not previously feasible. At the same time, it is crucial to explore the performance limits achievable on the latest generation multicore CPUs with the use of the best software optimization methods. In this article, a new tracking algorithm based on the Hough transform will be evaluated for the first time on a multi-core Intel Xeon E5-2697v2 CPU, an NVIDIA Tesla K20c GPU, and an Intel \xphi\ 7120 coprocessor. Preliminary time performance will be presented.Comment: 13 pages, 4 figures, Accepted to JINS

    Hamevol1.0: a C++ code for differential equations based on Runge-Kutta algorithm. An application to matter enhanced neutrino oscillation

    Full text link
    We present a C++ implementation of a fifth order semi-implicit Runge-Kutta algorithm for solving Ordinary Differential Equations. This algorithm can be used for studying many different problems and in particular it can be applied for computing the evolution of any system whose Hamiltonian is known. We consider in particular the problem of calculating the neutrino oscillation probabilities in presence of matter interactions. The time performance and the accuracy of this implementation is competitive with respect to the other analytical and numerical techniques used in literature. The algorithm design and the salient features of the code are presented and discussed and some explicit examples of code application are given.Comment: 18 pages, Late

    The Neutrino mass matrix after Kamland and SNO salt enhanced results

    Full text link
    An updated analysis of all available neutrino oscillation evidence in Solar experiments including the latest SNO ES,CC and NC data (254d live time, NaCL enhanced efficiency) is presented. We obtain, for the fraction of active oscillating neutrinos: sin^2alpha=(\Phi_{NC}-\Phi_{CC})/(\Phi_{SSM}-\Phi_{CC})=0.94^{+0.0.065}_{-0.060} nearly 20\sigma from the pure sterile oscillation case. The fraction of oscillating sterile neutrinos cos^2\alpha \lsim 0.12 (1 sigma CL). At face value, these results might slightly favour the existence of a small sterile oscillating sector. In the framework of two active neutrino oscillations we determine individual neutrino mixing parameters and their errors we obtain Delta m^2= 7.01\pm 0.08 \times 10^{-5} eV^2, tan^2 theta=0.42^{+0.12}_{-0.07}. The main difference with previous analysis is a better resolution in parameter space. In particular the secondary region at larger mass differences (LMAII) is now excluded at 95% CL. The combined analysis of solar and Kamland data concludes that maximal mixing is not favoured at 4-5 sigma. This is not supported by the antineutrino reactor results alone. We estimate the individual elements of the two neutrino mass matrix, writing M^2=m^2 I+M_0^2, we obtain (1 sigma errors): M_0^2=10^{-5} eV^2\pmatrix{ 2.06^{+0.29}_{-0.31} & 3.15^{+0.29}_{-0.35} \cr 3.15^{+0.29}_{-0.35} & 4.60^{+0.56}_{-0.44} }

    Solar neutrino experiments and Borexino perspectives

    Get PDF
    We present an updated analysis of all the data available about solar neutrinos, including the charged current SNO results. The best fit of the data is obtained in the Large Mixing Angle region, but different solutions are still possible. We also study the perspectives of Borexino and conclude that this experiment, with a parallel analysis of total rate and day-night asymmmetry, should be able to discriminate between the different possible solutions.Comment: 3 pages, Latex, talk given by V. Antonelli at TAUP 2001 Conferenc

    Solving the solar neutrino problem with kamLAND and BOREXINO

    Full text link
    We analyze the expected signals of two future neutrino experiments, kamLAND and BOREXINO. We show that with just these experiments, we will hopefully be able to determine which of the existing solutions to the solar neutrino problem is the real solution. We also analyze existing solar neutrino data and determine the best-fit points in the oscillation-parameter space finding that with the inclusion of SNO-charged current, the global-rates analysis gives a favored LMA solution with a goodness of fit (g.o.f) of just 32.63%, whereas the g.o.f of the SMA solution is 9.83%. Nonetheless, maximal and quasi-maximal mixing is not favored. If we include the Superkamiokande spectrum in our \chi^2 analysis, we obtain a LMA solution with a g.o.f. of 84.38%.Comment: 4 pages, 5 figures, Talk given at 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, France, 9-16 Mar 200

    The solar neutrino puzzle: present situation and future scenarios

    Get PDF
    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a global updated phenomenological analysis of all the available data and we comment on different possible future scenarios.Comment: 22 pp. Expanded version of the contribution to appear in the Proceedings of ``Les Rencontres de Physique de la Vallee d'Aoste'', February 200

    After Sno and Before Kamland: Present and Future of Solar and Reactor Neutrino Physics

    Get PDF
    We present a short review of the existing evidence in favor of neutrino mass and neutrino oscillations which come from different kinds of experiments. We focus our attention in particular on solar neutrinos, presenting a review of some recent analysis of all available neutrino oscillation evidence in Solar experiments including the recent SNOCCSNO CC and NCNC data. We present in detail the power of the reactor experiment KamLAND for discriminating existing solutions to the SNP and giving accurate information on neutrino masses and mixing angles.Comment: Expanded version of the contribution to appear in the Proceedings of ''Third Tropical Workshop on Particle Physics and Cosmology: Neutrinos, Branes and Cosmology (Puerto Rico, August 2002)'
    corecore