657 research outputs found

    Estradiol activates PI3K/Akt/GSK3 pathway under chronic neurodegenerative conditions triggered by perinatal asphyxia

    Get PDF
    Perinatal asphyxia (PA) remains as one of the most important causes of short-term mortality, psychiatric and neurological disorders in children, without an effective treatment. In previous studies we have observed that the expression of different neurodegenerative markers increases in CA1 hippocampal area of 4-months-old male rats born by cesarean section and exposed for 19 min to PA. We have also shown that a late treatment with 17β estradiol (daily dose of 250 μg/kg for 3 days) was able to revert the brain alterations observed in those animals. Based on these previous results, the main aim of the present study was to explore the mechanism by which the estrogenic treatment is involved in the reversion of the chronic neurodegenerative conditions induced by PA. We demonstrated that estradiol treatment of adult PA exposed animals induced an increase in estrogen receptor (ER) a and insulin-like growth factor receptor (IGF-1R) protein levels, an activation of the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 beta/β-catenin signaling pathway and an increase in Bcl-2/Bax ratio in the hippocampus in comparison to PA exposed animals treated with vehicle. Taking together, our data suggest that the interaction between ERa and IGF-IR, with the subsequent downstream activation, underlies the beneficial effects of estradiol observed in late treatment of PA.Fil: Saraceno, Gustavo Ezequiel. Universite de Bordeaux; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Bellini, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Garcia Segura, Luis Miguel. Consejo Superior de Investigaciones Científicas; España. Instituto de Salud Carlos III; EspañaFil: Capani, Francisco. Universidad Autónoma de Chile; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin

    Selective estrogen receptor modulators regulate reactive microglia after penetrating brain injury

    Get PDF
    Following brain injury, microglia assume a reactive-like state and secrete pro-inflammatory molecules that can potentiate damage. A therapeutic strategy that may limit microgliosis is of potential interest. In this context, selective estrogen receptor modulators, such as raloxifene and tamoxifen, are known to reduce microglia activation induced by neuroinflammatory stimuli in young animals. In the present study, we have assessed whether raloxifene and tamoxifen are able to affect microglia activation after brain injury in young and aged animals in time points relevant to clinics, which is hours after brain trauma. Volume fraction of MHC-II+ microglia was estimated according to the point-counting method of Weibel within a distance of 350 μm from the lateral border of the wound, and cellular morphology was measured by fractal analysis. Two groups of animals were studied: 1) young rats, ovariectomized at 2 months of age; and 2) aged rats, ovariectomized at 18 months of age. Fifteen days after ovariectomy animals received a stab wound brain injury and the treatment with estrogenic compounds. Our findings indicate that raloxifene and tamoxifen reduced microglia activation in both young and aged animals. Although the volume fraction of reactive microglia was found lower in aged animals, this was accompanied by important changes in cell morphology, where aged microglia assume a bushier and hyperplasic aspect when compared to young microglia. These data suggest that early regulation of microglia activation provides a mechanism by which SERMs may exert a neuroprotective effect in the setting of a brain trauma

    Decrease in PTEN and increase in Akt expression and neuron size in aged rat spinal cord

    Get PDF
    PTEN is a tumor suppressor gene known to play an important role in the regulation of cell size. In this study we compared PTEN expression in the spinal cord of young (5 mo.) versus aged (32 mo.) female rats and correlated them with alterations in neuron size and morphology in the same animals. Total and phosphorylated PTEN (pPTEN) as well as its downstream target phosphorylated Akt (pAkt) were assessed by western blotting. Spinal cord neurons were morphometrically characterized. Total PTEN, pPTEN and total Akt expression were significantly higher in young rats than in aged animals. Expression of pAkt was stronger in aged animals. A significant increase in neuronal size was observed in large motoneurons of aged as compared with young rats. Our data show that in the spinal cord of rats, neuronal PTEN expression diminishes with advanced age while neuronal size increases. These results suggest that in the spinal cord, an age-related reduction in PTEN and increase of pAkt expression may be involved in the progressive enlargement of neurons.Fil: Rodrigues de Amorim, Miguel Augusto. Consejo Superior de Investigaciones Científicas; EspañaFil: Garcia Segura, Luis Miguel. Consejo Superior de Investigaciones Científicas; EspañaFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Portiansky, Enrique Leo. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Cátedra de Patología General Veterinaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Role of X-linked genes on sex differences in neurogenin 3 expression in developing hypothalamic neurons

    Get PDF
    Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular; Argentina.Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Animal; Argentina.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Arévalo, María Ángeles. Consejo Superior de Investigaciones Científicas; España.Fil: Garcia-Segura, Luis Miguel Consejo Superior de Investigaciones Científicas; España.Fil: Cambiasso, María Julia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular B; Argentina.Fil: Cambiasso, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Our previous findings indicate that sex chromosome complement regulates the generation of sex differences in mouse hypothalamic neuronal development. Higher expression of neurogenin 3 (Ngn3) in XX neurons mediates sex differences in the rate of neuronal differentiation. Since Ngn3 is located in chromosome 10, these sex differences should be consequence of differences in the expression of X or Y chromosome genes that result from the inherent sex difference in the number (two copies of X) and/or type (presence or absence of Y) of sex chromosomes. We tested the hypothesis that X genes that escape X-inactivation are involved in regulation of sex differences in autosomal expression of Ngn3 and axonal length of hypothalamic neurons. To deal with this aim we evaluated the expression of Ddx3x, Eif2s3x, Kdm5c, Kdm6a, Mid1 and Usp9x in primary neuronal cultures from E14 male and female mice.http://falan-ibrolarc.org/drupal/es/content/scientific-programmeFil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular; Argentina.Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Animal; Argentina.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Arévalo, María Ángeles. Consejo Superior de Investigaciones Científicas; España.Fil: Garcia-Segura, Luis Miguel Consejo Superior de Investigaciones Científicas; España.Fil: Cambiasso, María Julia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular B; Argentina.Fil: Cambiasso, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Bioquímica y Biología Molecular (ídem 3.1.10

    Role of sex chromosome complement in the regulation of aromatase expression in developing mice brain

    Get PDF
    Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular; Argentina.Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Animal; Argentina.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Arévalo, María Ángeles. Consejo Superior de Investigaciones Científicas; España.Fil: Garcia-Segura, Luis Miguel Consejo Superior de Investigaciones Científicas; España.Fil: Cambiasso, María Julia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular B; Argentina.Fil: Cambiasso, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.During the critical period of sexual differentiation there are sex differences in brain aromatase expression that are time and regionally specific. Some of these sex differences cannot be explained by organizational — actions of — gonadal hormones because they occur before exposition to testosterone in — utero. Previous results from our group using the four core genotype mouse model (FCG) demonstrate that XY neurons from amygdala express -higher levels of aromatase and Cyp19al than XX neurons of E15 mice independent of gonadal sex. The present study explores the regulation of aromatase in amygdala neurons from E15 mice brain and the role of estrogen (ERa and ERB) and androgen receptors (AR) in this regulation.https://www.sfn.org/annual-meeting/neuroscience-2016/abstractsFil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular; Argentina.Fil: Cisternas, Carla Daniela. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Animal; Argentina.Fil: Cisternas, Carla Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Fil: Arévalo, María Ángeles. Consejo Superior de Investigaciones Científicas; España.Fil: Garcia-Segura, Luis Miguel Consejo Superior de Investigaciones Científicas; España.Fil: Cambiasso, María Julia. Universidad Nacional de Córdoba. Facultad de Odontología. Cátedra de Biología Celular B; Argentina.Fil: Cambiasso, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentina.Bioquímica y Biología Molecular (ídem 3.1.10

    Protection by Neuroglobin Expression in Brain Pathologies

    Get PDF
    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes.GB’s work is supported by Pontificia Universidad Javeriana.Peer reviewedPeer Reviewe

    Estradiol Activates β-Catenin Dependent Transcription in Neurons

    Get PDF
    Estradiol may fulfill a plethora of functions in neurons, in which much of its activity is associated with its capacity to directly bind and dimerize estrogen receptors. This hormone-protein complex can either bind directly to estrogen response elements (ERE's) in gene promoters, or it may act as a cofactor at non-ERE sites interacting with other DNA-binding elements such as AP-1 or c-Jun. Many of the neuroprotective effects described for estrogen have been associated with this mode of action. However, recent evidence suggests that in addition to these “genomic effects”, estrogen may also act as a more general “trophic factor” triggering cytoplasmic signals and extending the potential activity of this hormone. We demonstrated that estrogen receptor alpha associates with β-catenin and glycogen synthase kinase 3 in the brain and in neurons, which has since been confirmed by others. Here, we show that the action of estradiol activates β-catenin transcription in neuroblastoma cells and in primary cortical neurons. This activation is time and concentration-dependent, and it may be abolished by the estrogen receptor antagonist ICI 182780. The transcriptional activation of β-catenin is dependent on lymphoid enhancer binding factor-1 (LEF-1) and a truncated-mutant of LEF-1 almost completely blocks estradiol TCF-mediated transcription. Transcription of a TCF-reporter in a transgenic mouse model is enhanced by estradiol in a similar fashion to that produced by Wnt3a. In addition, activation of a luciferase reporter driven by the engrailed promoter with three LEF-1 repeats was mediated by estradiol. We established a cell line that constitutively expresses a dominant-negative LEF-1 and it was used in a gene expression microarray analysis. In this way, genes that respond to estradiol or Wnt3a, sensitive to LEF-1, could be identified and validated. Together, these data demonstrate the existence of a new signaling pathway controlled by estradiol in neurons. This pathway shares some elements of the insulin-like growth factor-1/Insulin and Wnt signaling pathways, however, our data strongly suggest that it is different from that of both these ligands. These findings may reveal a set of new physiological roles for estrogens, at least in the Central Nervous System (CNS)

    Role of Neuroactive Steroids in the Peripheral Nervous System

    Get PDF
    Several reviews have so far pointed out on the relevant physiological and pharmacological role exerted by neuroactive steroids in the central nervous system. In the present review we summarize observations indicating that synthesis and metabolism of neuroactive steroids also occur in the peripheral nerves. Interestingly, peripheral nervous system is also a target of their action. Indeed, as here reported neuroactive steroids are physiological regulators of peripheral nerve functions and they may also represent interesting therapeutic tools for different types of peripheral neuropathy

    Estradiol therapy in adulthood reverses glial and neuronal alterations caused by perinatal asphyxia

    Get PDF
    The capacity of the ovarian hormone 17beta-estradiol to prevent neurodegeneration has been characterized in several animal models of brain and spinal cord pathology. However, the potential reparative activity of the hormone under chronic neurodegenerative conditions has received less attention. In this study we have assessed the effect of estradiol therapy in adulthood on chronic glial and neuronal alterations caused by perinatal asphyxia (PA) in rats. Four-month-old male Sprague-Dawley rats submitted to PA just after delivery, and their control littermates, were injected for 3 consecutive days with 17beta estradiol or vehicle. Animals subjected to PA and treated with vehicle showed an increased astrogliosis, focal swelling and fragmented appearance of MAP-2 immunoreactive dendrites, decreased MAP-2 immunoreactivity and decreased phosphorylation of high and medium molecular weight neurofilaments in the hippocampus, compared to control animals. Estradiol therapy reversed these alterations. These findings indicate that estradiol is able to reduce, in adult animals, chronic reactive astrogliosis and neuronal alterations caused by an early developmental neurodegenerative event, suggesting that the hormone might induce reparative actions in the Central Nervous System (CNS).Fil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Aon Bertolino, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Galeano, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Romero, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Garcia Segura, Luis Miguel. Consejo Superior de Investigaciones Científicas; EspañaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; Argentin

    Estradiol Meets Notch Signaling in Developing Neurons

    Get PDF
    The transmembrane receptor Notch, a master developmental regulator, controls gliogenesis, neurogenesis, and neurite development in the nervous system. Estradiol, acting as a hormonal signal or as a neurosteroid, also regulates these developmental processes. Here we review recent evidence indicating that estradiol and Notch signaling interact in developing hippocampal neurons by a mechanism involving the putative membrane receptor G protein-coupled receptor 30. This interaction is relevant for the control of neuronal differentiation, since the downregulation of Notch signaling by estradiol results in the upregulation of neurogenin 3, which in turn promotes dendritogenesis
    corecore