7 research outputs found
Cloning and endogenous expression of a Eucalyptus grandis UDP-glucose dehydrogenase cDNA
UDP-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in the biosynthesis of plant cell wall polysaccharides. A full-length cDNA fragment coding for UGDH was cloned from the cambial region of 6-month-old E. grandis saplings by RT-PCR. The 1443-bp-ORF encodes a protein of 480 amino acids with a predicted molecular weight of 53 kDa. The recombinant protein expressed in Escherichia coli catalyzed the conversion of UDP-Glc to UDP-GlcA, confirming that the cloned cDNA encodes UGDH. The deduced amino acid sequence of the cDNA showed a high degree of identity with UGDH from several plant species. The Southern blot assay indicated that more than one copy of UGDH is present in Eucalyptus. These results were also confirmed by the proteomic analysis of the cambial region of 3- and 22-year-old E. grandis trees by 2-DE and LC-MS/MS, showing that at least two isoforms are present. The cloned gene is mainly expressed in roots, stem and bark of 6-month-old saplings, with a lower expression in leaves. High expression levels were also observed in the cambial region of 3- and 22-year-old trees. The results described in this paper provide a further view of the hemicellulose biosynthesis during wood formation in E. grandis
Identification of proteins differentially expressed and evaluation of the chemical composition of the leaf cell wall in Eucalyptus grandis clones in response to the rust fungus (Puccinia psidii Winter)
O Eucalyptus é o gênero mais importante para a indústria brasileira de papel e celulose. Eucalyptus grandis Hill ex. Maiden e seus híbridos são preferencialmente usados pela indústria devido ao rápido crescimento e alta produtividade volumétrica. Embora possua características adequadas à utilização comercial, vários estresses abióticos e bióticos influenciam sua produção. O IPGRI (International Plant Genetic Resources Institute) destaca a Puccinia psidii como sendo a maior ameaça para a cultura nos tempos atuais. A doença não co-evoluiu com o hospedeiro e por essa razão, torna o patógeno um elemento potencial a vencer as barreiras impostas pelo hospedeiro. O fungo ataca plantas jovens, incluindo mudas em viveiros, plantas em jardins clonais e plantações comercias com até 2 anos de idade. Com o objetivo de identificar proteínas diferencialmente expressas e avaliar as mudanças ocorridas na composição química da parede celular das folhas, o presente trabalho analisou o impacto da presença do fungo sobre os clones comerciais, resistentes (7) e suscetíveis (24), de eucalipto. Os clones de E. grandis, 7 e 24, previamente inoculados com uredósporos de P. psidii, foram utilizados para extração de proteínas após 24 horas de interação com o fungo. As análises foram realizadas com auxílio de SDS-PAGE de primeira e segunda dimensão, em gradiente de pH na faixa de 4-7, utilizando-se 750 µg de proteínas. As imagens dos géis, em triplicata, analisadas pelo programa (Image Master Elite v. 3.01), possibilitaram a identificação de 466 spots. A comparação entre os perfis eletroforéticos dos clones que foram analisados e os controles não inoculados, mostrou que o processo de infecção do fungo nas plantas induziu o aparecimento de 72 spots exclusivos para o clone 7 além de alterações do volume de outros 115 spots. Já para o clone 24, a exposição ao fungo promoveu o aparecimento de 22 spots exclusivos e alterações de outros 98. Os perfis eletroforéticos dos clones controle, que não foram expostos ao fungo, mostraram diferenças genéticas entre os clones 7 e 24. O clone resistente, apresentou grande concentração de spots na região entre 14 a 45 kDa. Já para o clone suscetível, os spots se concentraram na região entre 25 a 97 kDa. A avaliação do conteúdo de carboidratos e ácidos urônicos da parede celular mostrou alterações no conteúdo dos açúcares no material inoculado com P. psidii, após 24 horas, 6 e 12 dias de inoculação. Os teores de glicose observados para os clones 7 e 24, já após 24 horas da inoculação, mostraram-se bastante alterados, indicando que esse açúcar possui papel chave no processo de formação da parede celular e conseqüentemente no mecanismo de defesa vegetal.Eucalyptus is the most important genus for the Brazilian pulp and paper industry. Eucalyptus grandis Hill ex. Maiden and hybrids are preferentially used by the industry due to its rapid growth and high volumetric productivity. Although they possess characteristics adequate for commercial use, various biotic and abiotic stresses influence production. IPGRI (International Plant Genetic Resources Institute) highlight Puccinia psidii as the largest current threat to the culture. The disease did not co-evolve with the host and for this reason has become the pathogen with most potential to overcome the barriers imposed by the host. The fungus attacks young plants, including saplings in nursery, clonal gardens and commercial plants up to 2 years-old. With the objectives of identifying the proteins differentially expressed and evaluate the changes occurring in the chemical composition of the cell walls in the leaves, the present work analyzed the impact of the presence of the fungus on the commercial eucalyptus clones, resistant (7) and susceptible (24). The E. grandis clones (7 and 24) were inoculated with P. psidii urideospores and proteins extracted after 24 hours interaction with the fungus. The analyses were carried out using a pH gradient (4-7) in the first and SDS-PAGE in the second dimension, loading 750 µg onto the gel. The gel images, in triplicate, were analyzed using the software Image Master Elite v. 3.01, allowing the identification of 466 spots. The electrophoretic profiles for each clone were analyzed and compared to the uninoculated controls, showing that the fungal infection process induced the appearance of 72 exclusive spots in clone 7 and an alteration in the volume of another 115 spots. In clone 24, exposure to the fungus induced the appearance of 22 exclusive spots and altered another 98. The electrophoretic profiles of the control clone, not exposed to the fungus, demonstrated genetic differences between the 7 and 24. The resistant clone (7) presented a large concentration of spots around 14 to 45 kDa. In contrast, the susceptible clone (24) presented a concentration of spots around 25 to 97 kDa. Evaluation of the carbohydrate and uronic acid content of the cell wall showed an alteration in the sugar content in the material exposed to P. psidii after 24 hour, 6 and 12 days after inoculation. The glucose levels observed for clones 7 and 24 were considerable altered 24 hours after inoculation, indicating that this sugar has a key role in cell wall formation and consequently in the plant defense mechanism
Transcriptomic and proteomic analysis of sugarcane culm relationaded to sucrose metabolism
A cana-de-açúcar é uma importante cultura na economia brasileira, tanto pela produção de açúcar como pela produção de biocombustíveis, contabilizando mais de US 20 billions/year, placing Brazil as the most important country in this trade. On the other hand sugarcane has reached a limit in sucrose production, an effect of the narrow gene pool used in current commercial breeding programs. Our objective was to assess the dynamics of sucrose accumulation in sugarcane stalks, by investigating the gene expression in the storage parenchyma of sugarcane plants during development, using transcriptomic and proteomic approches. Sugarcane variety (SP80-3280) was cultivated under greenhouse conditions and internodes 4-to-9 were harvested at 4, 7 and 10 months. In order to increase the sugar content, 10 month old plants were subjected to a period of water stress before sampling. All internodes were analyzed to evaluate the soluble sugars content, the internodes 5 and 9 were used in transcriptomic, and 9 was used in proteomic analyses. Expression profiles of genes involved in sucrose cycling from the 4, 7 and 10 month old plants were studied using qRT-PCR. Proteomic approaches (2D-PAGE) were done by comparing protein expression profiles between mature internode in 7 and 10 month, and the selected spots were identified by LC-ESI-Q-TOF-MS/MS. Total soluble sugars in the storage parenchyma increased around 2,5-fold when 7 and 10 month old internodes were compared. This rise could be explained by a change in the expression of genes involved in sucrose metabolism. Endogenous and exogenous signals trigger the mechanism of sucrose synthesis which is often regulated by enzymes and signaling sugars. We identified 81 proteins from the 7 and 10 month old which included differentially expressed and exclusive spots. The data from the gene expression and proteome analyses are compared in order to understand the molecular mechanisms involved in sucrose storage
Rapid screening for selection of heavy metal-tolerant plants
One of the major difficulties in studies on the selection of heavy metal tolerant plants is the proper methodology that must ensure an efficient evaluation of a large number of plants, but reducing environmental contamination. For this reason, we propose a simple and effective method that can be applied to metals or other chemicals by means of a case study, in which we selected two cadmium-tolerant mutants of tomato (cv Micro-Tom) obtained by mutagenesis with methyl ethanesulfonate (MES). Aside from these two new mutants, we selected 21 others with possible alterations in the response to this metal. Finally, it was concluded that the proposed system is ideal for selection studies on plants tolerant to heavy metals and possibly to other elements, due to the ease of assembly of the structure, low installation cost, minimal waste generation and the possibility of using different species and heavy metals
Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content
Sugar cane is an important crop for
sugar and biofuel production.
Its lignocellulosic biomass represents a promising option as feedstock
for second-generation ethanol production. Nitrogen fertilization can
affect differently tissues and its biopolymers, including the cell-wall
polysaccharides and lignin. Lignin content and composition are the
most important factors associated with biomass recalcitrance to convert
cell-wall polysaccharides into fermentable sugars. Thus it is important
to understand the metabolic relationship between nitrogen fertilization
and lignin in this feedstock. In this study, a large-scale proteomics
approach based on GeLC–MS/MS was employed to identify and relatively
quantify proteins differently accumulated in two contrasting genotypes
for lignin composition after excessive nitrogen fertilization. From
the ∼1000 nonredundant proteins identified, 28 and 177 were
differentially accumulated in response to nitrogen from IACSP04-065
and IACSP04-627 lines, respectively. These proteins were associated
with several functional categories, including carbon metabolism, amino
acid metabolism, protein turnover, and oxidative stress. Although
nitrogen fertilization has not changed lignin content, phenolic acids
and lignin composition were changed in both species but not in the
same way. Sucrose and reducing sugars increased in plants of the genotype
IACSP04-065 receiving nitrogen