722 research outputs found

    Genetic diversity-fitness correlation revealed by microsatellite analyses in European alpine marmots (Marmota marmota). Conserv. Genet

    Get PDF
    Abstract The relationship between individual genetic diversity and fitness-related traits are poorly understood in the wild. The availability of highly polymorphic molecular markers, such as microsatellites, has made research on this subject more feasible. We used three microsatellite-based measures of genetic diversity, individual heterozygosity H, mean d 2 and mean d 2 outbreeding to test for a relationship between individual genetic diversity and important fitness trait, juvenile survival, in a population of alpine marmots (Marmota marmota), after controlling for the effects of ecological, social and physiological parameters that potentially influence juvenile survival in marmots. Analyses were conducted on 158 juveniles, and revealed a positive association between juvenile survival and genetic diversity measured by mean H. No association was found with mean d 2 and with mean d 2 outbreeding . This suggests a fitness disadvantage to less heterozygous juveniles. The genetic diversity-fitness correlation (GDFC) was somewhat stronger during years with poor environmental conditions (i.e. wet summers). The stressful environmental conditions of this high mountain population might enhance inbreeding depression and make this association between genetic diversity and fitness detectable. Moreover the mating system, allowing extra pair copulation by occasional immigrants, as well as close inbreeding, favours a wide range of individual genetic diversity (mean H ranges from 0.125 to 1), which also may have facilitated the detection of the GDFC. The results further suggest that the observed GDFC is likely to be explained by the ''local effect'' hypothesis rather than by the ''general effect'' hypothesis

    LOSITAN: A workbench to detect molecular adaptation based on a Fst-outlier method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Testing for selection is becoming one of the most important steps in the analysis of multilocus population genetics data sets. Existing applications are difficult to use, leaving many non-trivial, error-prone tasks to the user.</p> <p>Results</p> <p>Here we present LOSITAN, a selection detection workbench based on a well evaluated <it>F</it><sub><it>st</it></sub>-outlier detection method. LOSITAN greatly facilitates correct approximation of model parameters (e.g., genome-wide average, neutral <it>F</it><sub><it>st</it></sub>), provides data import and export functions, iterative contour smoothing and generation of graphics in a easy to use graphical user interface. LOSITAN is able to use modern multi-core processor architectures by locally parallelizing fdist, reducing computation time by half in current dual core machines and with almost linear performance gains in machines with more cores.</p> <p>Conclusion</p> <p>LOSITAN makes selection detection feasible to a much wider range of users, even for large population genomic datasets, by both providing an easy to use interface and essential functionality to complete the whole selection detection process.</p

    Exome-wide DNA capture and next generation sequencing in domestic and wild species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.</p> <p>We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (<it>Bos taurus</it>) to capture (enrich for), and subsequently sequence, thousands of exons of <it>B. taurus</it>, <it>B. indicus</it>, and <it>Bison bison </it>(wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits.</p> <p>Results</p> <p>We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the <it>B. taurus </it>genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes.</p> <p>Conclusions</p> <p>This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.</p

    Challenges in Columbia River Fisheries Conservation: A Response to Duda et al.

    Get PDF
    The salmonid fisheries of the Columbia River Basin (CRB) have enormous socioeconomic, cultural, and ecological importance to numerous diverse stakeholders (eg state, federal, tribal, nonprofit), and there are a wide array of opinions and perspectives on how these fisheries should be managed. Although we appreciate Duda et al.\u27s commentary, it offers only one perspective of many in this context. The objective of our paper (Hand et al. 2018) was to provide justification for “the importance of social–ecological perspectives when communicating conservation values and goals, and the role of independent science in guiding management policy and practice for salmonids in the CRB”. However, we did not intend to strictly advocate for a single course of action, and the available space within our paper\u27s Panel 1 limited us from engaging in a thorough ecological debate

    Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle

    Get PDF
    The concept of ‘effective population size’ (Ne), which quantifies how quickly a population will lose genetic variability, is one of the most important contributions of theoretical evolutionary biology to practical conservation management. Ne is often much lower than actual population size: how much so depends on key life history and demographic parameters, such as mating systems and population connectivity, that often remain unknown for species of conservation concern. Molecular techniques allow the indirect study of these parameters, as well as the estimation of current and historical Ne. Here, we use genotyping to assess the genetic health of an important population of the critically endangered hawksbill turtle (Eretmochelys imbricata), a slow-to-mature, difficult-to-observe species with a long history of severe overhunting. Our results were surprisingly positive: we found that the study population, located in the Republic of Seychelles, Indian Ocean, has a relatively large Ne, estimated to exceed 1000, and showed no evidence of a recent reduction in Ne (i.e. no genetic bottleneck). Furthermore, molecular inferences suggest the species' mating system is conducive to maintaining a large Ne, with a relatively large and widely distributed male population promoting considerable gene flow amongst nesting sites across the Seychelles area. This may also be reinforced by the movement of females between nesting sites. Our study underlines how molecular techniques can help to inform conservation biology. In this case our results suggest that this important hawksbill population is starting from a relatively strong position as it faces new challenges, such as global climate change

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation

    Get PDF
    Biodiversity projections with uncertainty estimates under different climate, land-use, and policy scenarios are essential to setting and achieving international targets to mitigate biodiversity loss. Evaluating and improving biodiversity predictions to better inform policy decisions remains a central conservation goal and challenge. A comprehensive strategy to evaluate and reduce uncertainty of model outputs against observed measurements and multiple models would help to produce more robust biodiversity predictions. We propose an approach that integrates biodiversity models and emerging remote sensing and in-situ data streams to evaluate and reduce uncertainty with the goal of improving policy-relevant biodiversity predictions. In this article, we describe a multivariate approach to directly and indirectly evaluate and constrain model uncertainty, demonstrate a proof of concept of this approach, embed the concept within the broader context of model evaluation and scenario analysis for conservation policy, and highlight lessons from other modeling communities

    Genetic variability in the Skyros pony and its relationship with other Greek and foreign horse breeds

    Get PDF
    In Greece, seven native horse breeds have been identified so far. Among these, the Skyros pony is outstanding through having a distinct phenotype. In the present study, the aim was to assess genetic diversity in this breed, by using different types of genetic loci and available genealogical information. Its relationships with the other Greek, as well as foreign, domestic breeds were also investigated. Through microsatellite and pedigree analysis it appeared that the Skyros presented a similar level of genetic diversity to the other European breeds. Nevertheless, comparisons between DNA-based and pedigree-based results revealed that a loss of genetic diversity had probably already occurred before the beginning of breed registration. Tests indicated the possible existence of a recent bottleneck in two of the three main herds of Skyros pony. Nonetheless, relatively high levels of heterozygosity and Polymorphism Information Content indicated sufficient residual genetic variability, probably useful in planning future strategies for breed conservation. Three other Greek breeds were also analyzed. A comparison of these with domestic breeds elsewhere, revealed the closest relationships to be with the Middle Eastern types, whereas the Skyros itself remained isolated, without any close relationship, whatsoever

    The power to detect artificial selection acting on single loci in recently domesticated species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of aquaculture species are subjected to artificial selection in systematic breeding programs. Rapid improvements of important commercial traits are reported, but little is known about the effects of the strong directional selection applied, on gene level variation. Large numbers of genetic markers are becoming available, making it feasible to detect and estimate these effects. Here a simulation tool was developed in order to explore the power by which single genetic loci subjected to uni-directional selection in parallel breeding populations may be detected.</p> <p>Findings</p> <p>Two simulation models were pursued: 1) screening for loci displaying higher genetic differentiation than expected (high-F<sub>ST </sub>outliers), from neutral evolution between a pool of domesticated populations and a pool of wild populations; 2) screening for loci displaying lower genetic differentiation (low-F<sub>ST </sub>outliers) between domesticated strains than expected from neutral evolution. The premise for both approaches was that the isolated domesticated strains are subjected to the same breeding goals. The power to detect outlier loci was calculated under the following parameter values: number of populations, effective population size per population, number of generations since onset of selection, initial F<sub>ST</sub>, and the selection coefficient acting on the locus. Among the parameters investigated, selection coefficient, the number of generation since onset of selection, and number of populations, had the largest impact on power. The power to detect loci subjected to directional in breeding programmes was high when applying the between farmed and wild population approach, and low for the between farmed populations approach.</p> <p>Conclusions</p> <p>A simulation tool was developed for estimating the power to detect artificial selection acting directly on single loci. The simulation tool should be applicable to most species subject to domestication, as long as a reasonable high accuracy in input parameters such as effective population size, number of generations since the initiation of selection, and initial differentiation (F<sub>ST</sub>) can be obtained. Identification of genetic loci under artificial selection would be highly valuable, since such loci could be used to monitor maintenance of genetic variation in the breeding populations and monitoring possible genetic changes in wild populations from genetic interaction between escapees and their wild counterpart.</p

    Large-Scale Mitochondrial DNA Analysis of the Domestic Goat Reveals Six Haplogroups with High Diversity

    Get PDF
    Background. From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. Methodology/Principal Findings. The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent). These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA) control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals). The large-scale distribution of other haplogroups (except one), may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. Conclusions/Significance. We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of reference. Such a method could be also applied for clarifying the nomenclature of mitochondrial haplogroups in other domestic species
    corecore