201 research outputs found
Family-oriented and family-centered care in pediatrics
<p>Abstract</p> <p>Background</p> <p>To humanize the management of children in hospitals has become a serious concern of civil society and one of the main goals of public and private health centers, health care providers and governments.</p> <p>Discussion</p> <p>The concepts of family-centered and family-oriented care are discussed with the aim to emphasize their importance in pediatrics. Notions related to family-centered care, such as cultural diversity and cultural competence, are also discussed given the importance they have gained following the recent transformations of socioeconomic, demographic and ethnic characteristics of economically advantaged Countries. Family-centered care has developed as a result of the increased awareness of the importance of meeting the psychosocial and developmental needs of children and of the role of families in promoting the health and well-being of their children. Family-oriented care aims at extending the responsibilities of the pediatrician to include screening, assessment, and referral of parents for physical, emotional, social problems or health risk behaviors that can adversely affect the health and emotional or social well-being of their child.</p> <p>Summary</p> <p>Family-centered and family-oriented care concepts should be incorporated into all aspects of pediatricians' professional practice, whether it is private practice or in public hospitals, to better serve the needs of ill children.</p
Analysis of lactase processing in rabbit
AbstractThe proteolytic processing of rabbit intestinal lactase-phlorizin-hydrolase (LPH) was studied by pulse-chase and continuous labeling experiments in organ culture from 15-day-old rabbits in the presence of glycosylation and processing inhibitors. Monensin and brefeldin A inhibited the two proteolytic cleavages of the precursor indicating that they are post-Golgi events as previously reported for the unique cleavage of LPH in man [1]. The inhibition was not related to a concomitant alteration glycosylation; in fact, if trimming was blocked by MDNM the abnormal glycosylated precursor was proteolytically processed normally. Finally the use of the anti-microtubular drug colchicine strongly inhibited both cleavages and caused accumulation of the complex-glycosylated precursor form in the brush border fraction indicating that proteolytic events depend on intact microtubule (transport)
Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine
Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability
Collective rotational motion of freely expanding T84 epithelial cell colonies
Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system
Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation
<div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24Â h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div
Urea-induced ROS generation causes insulin resistance in mice with chronic renal failure.
Although supraphysiological concentrations of urea are known to increase oxidative stress in cultured cells,
it is generally thought that the elevated levels of urea in chronic renal failure patients have negligible toxicity.
We previously demonstrated that ROS increase intracellular protein modification by O-linked β-N-acetylglucosamine
(O-GlcNAc), and others showed that increased modification of insulin signaling molecules by
O-GlcNAc reduces insulin signal transduction. Because both oxidative stress and insulin resistance have been
observed in patients with end-stage renal disease, we sought to determine the role of urea in these phenotypes.
Treatment of 3T3-L1 adipocytes with urea at disease-relevant concentrations induced ROS production,
caused insulin resistance, increased expression of adipokines retinol binding protein 4 (RBP4) and resistin,
and increased O-GlcNAc–modified insulin signaling molecules. Investigation of a mouse model of surgically
induced renal failure (uremic mice) revealed increased ROS production, modification of insulin signaling molecules
by O-GlcNAc, and increased expression of RBP4 and resistin in visceral adipose tissue. Uremic mice also
displayed insulin resistance and glucose intolerance, and treatment with an antioxidant SOD/catalase mimetic
normalized these defects. The SOD/catalase mimetic treatment also prevented the development of insulin
resistance in normal mice after urea infusion. These data suggest that therapeutic targeting of urea-induced
ROS may help reduce the high morbidity and mortality caused by end-stage renal disease
IL-9 and Mast Cells Are Key Players of Candida albicans Commensalism and Pathogenesis in the Gut
Summary: Candida albicans is implicated in intestinal diseases. Identifying host signatures that discriminate between the pathogenic versus commensal nature of this human commensal is clinically relevant. In the present study, we identify IL-9 and mast cells (MCs) as key players of Candida commensalism and pathogenicity. By inducing TGF-β in stromal MCs, IL-9 pivotally contributes to mucosal immune tolerance via the indoleamine 2,3-dioxygenase enzyme. However, Candida-driven IL-9 and mucosal MCs also contribute to barrier function loss, dissemination, and inflammation in experimental leaky gut models and are upregulated in patients with celiac disease. Inflammatory dysbiosis occurs with IL-9 and MC deficiency, indicating that the activity of IL-9 and MCs may go beyond host immunity to include regulation of the microbiota. Thus, the output of the IL-9/MC axis is highly contextual during Candida colonization and reveals how host immunity and the microbiota finely tune Candida behavior in the gut. : Deciphering the mechanisms by which Candida albicans promotes either pathology or protective tolerance in the gut could be clinically relevant. Renga et al. show a key role for IL-9 and mast cells in promoting either inflammatory dysbiosis and pathology or tolerance in leaky gut models and human celiac disease. Keywords: IL-9, mast cells, Candida albicans, intestinal inflammation, IDO1, celiac diseas
A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease
Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8-restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the \u3b1-gliadin-derived LGQQQPFPPQQPY peptide (P31-43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell-autonomous or environmental stress. P31-43 binds to, and reduces ATPase activity of, the nucleotide-binding domain-1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF-\u3baB nuclear translocation and IL-15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX-770 attenuates gliadin-induced inflammation and promotes a tolerogenic response in gluten-sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease
Broad targeting of resistance to apoptosis in cancer
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
Circulating hematopoietic stem cells and putative intestinal stem cells in coeliac disease
Background:
The intestinal stem cells (ISC) modulation and the role of circulating hematopoietic stem cells (HSC) in coeliac disease (CD) are poorly understood. Our aim was to investigate the longitudinal modifications in peripheral blood HSC traffic and putative ISC density induced by gluten-free diet (GFD) in CD.
Methods:
Thirty-one CD patients and 7 controls were enrolled. Circulating CD133+ and CD34+ HSC were measured by flow cytometry, at enrolment and after 7 days and 1, 3, 6, 12, and 24 months of GFD. Endoscopy was performed at diagnosis and repeated at 6, 12, and 24 months following GFD. We used the Marsh-Oberhuber score to evaluate the histological severity of duodenal damage; immunohistochemistry was employed to measure the intraepithelial lymphoid infiltrate (IEL, CD3+ lymphoid cells) and the putative ISC compartment (CD133+ and Lgr5+ epithelial cells).
Results:
At enrolment, circulating HSCs were significantly increased in CD patients and they further augmented during the first week of GFD, but progressively decreased afterwards. CD patients presented with villous atrophy, abundant IEL and rare ISC residing at the crypt base. Upon GFD, IEL progressively decreased, while ISC density increased, peaking at 12 months. After 24 months of GFD, all patients were asymptomatic and their duodenal mucosa was macroscopically and histologically normal.
Conclusions:
In active CD patients, the ISC niche is depleted and there is an increased traffic of circulating HSC versus non-coeliac subjects. GFD induces a precocious mobilization of circulating HSC, which is followed by the expansion of the local ISC compartment, leading to mucosal healing and clinical remission
- …