70 research outputs found
Studies on the mechanism of the vitamin K-dependent carboxylation reaction:Carboxylation without the concurrent formation of vitamin K 2,3-epoxide
Bio-organic Synthesi
Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization
We describe a cryogenic sample exchange system that dramatically improves the efficiency of magic angle spinning (MAS) dynamic nuclear polarization (DNP) experiments by reducing the time required to change samples and by improving long-term instrument stability. Changing samples in conventional cryogenic MAS DNP/NMR experiments involves warming the probe to room temperature, detaching all cryogenic, RF, and microwave connections, removing the probe from the magnet, replacing the sample, and reversing all the previous steps, with the entire cycle requiring a few hours. The sample exchange system described here—which relies on an eject pipe attached to the front of the MAS stator and a vacuum jacketed dewar with a bellowed hole—circumvents these procedures. To demonstrate the excellent sensitivity, resolution, and stability achieved with this quadruple resonance sample exchange probe, we have performed high precision distance measurements on the active site of the membrane protein bacteriorhodopsin. We also include a spectrum of the tripeptide N-f-MLF-OH at 100 K which shows 30 Hz linewidths.National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002804)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001960)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-001035)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-002026)National Institute for Biomedical Imaging and Bioengineering (U.S.) (Grant EB-003151)National Science Foundation (U.S.). Graduate Research Fellowship Progra
Action Spectroscopy on Dense Samples of Photosynthetic Reaction Centers of Rhodobacter sphaeroides WT Based on Nanosecond Laser-Flash 13C Photo-CIDNP MAS NMR
Photochemically induced dynamic nuclear polarization magic-angle spinning nuclear magnetic resonance (photo-CIDNP MAS NMR) allows for the investigation of the electronic structure of the photochemical machinery of photosynthetic reaction centers (RCs) at atomic resolution. For such experiments, either continuous radiation from white xenon lamps or green laser pulses are applied to optically dense samples. In order to explore their optical properties, optically thick samples of isolated and quinone-removed RCs of the purple bacteria of Rhodobacter sphaeroides wild type are studied by nanosecond laser-flash 13C photo-CIDNP MAS NMR using excitation wavelengths between 720 and 940Â nm. Action spectra of both the transient nuclear polarization as well as the nuclear hyperpolarization, remaining in the electronic ground state at the end of the photocycle, are obtained. It is shown that the signal intensity is limited by the amount of accessible RCs and that the different mechanisms of the photo-CIDNP production rely on the same photophysical origin, which is the photocycle induced by one single photon
Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments
This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz [superscript 1]H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between [superscript 1]H–[superscript 1]H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.National Institutes of Health (U.S.) (Grant EB002804)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026)National Institutes of Health (U.S.) (Grant EB001965)National Institutes of Health (U.S.) (Grant EB004866)National Science Foundation (U.S.). Graduate Research Fellowship Progra
Long-Term Cause-Specific Mortality in Hodgkin Lymphoma Patients
BACKGROUND: Few studies have examined the impact of treatment-related morbidity on long-term, cause-specific mortality in Hodgkin lymphoma (HL) patients. METHODS: This multicenter cohort included 4919 HL patients, treated before age 51 years between 1965 and 2000, with a median follow-up of 20.2 years. Standardized mortality ratios, absolute excess mortality (AEM) per 10 000 person-years, and cause-specific cumulative mortality by stage and primary treatment, accounting for competing risks, were calculated. RESULTS: HL patients experienced a 5.1-fold (AEM = 123 excess deaths per 10 000 person-years) higher risk of death due to causes other than HL. This risk remained increased in 40-year survivors (standardized mortality ratio = 5.2, 95% confidence interval [CI] = 4.2 to 6.5, AEM = 619). At age 54 years, HL survivors experienced similar cumulative mortality (20.0%) from causes other than HL to 71-year-old individuals from the general population. Whereas HL mortality statistically significantly decreased over the calendar period (P < .001), solid tumor mortality did not change in the most recent treatment era. Patients treated in 1989-2000 had lower 25-year cardiovascular disease mortality than patients treated in 1965-1976 (4.3% vs 5.7%; subdistribution hazard ratio = 0.65, 95% CI = 0.46 to 0.93). Infectious disease mortality was not only increased after splenectomy but also after spleen irradiation (hazard ratio = 2.81, 95% CI = 1.55 to 5.07). For stage I-II, primary treatment with chemotherapy (CT) alone was associated with statistically significantly higher HL mortality (P < .001 for CT vs radiotherapy [RT]; P = .04 for CT vs RT+CT) but lower 30-year mortality from causes other than HL (15.8%, 95% CI = 9.7% to 23.3%) compared with RT alone (36.9%, 95% CI = 34.0% to 39.8%, P = .001) and RT and CT combined (29.8%, 95% CI = 26.8% to 32.9%, P = .02). CONCLUSIONS: Compared with the general population, HL survivors have a substantially reduced life expectancy. Optimal selection of patients for primary CT is crucial, weighing risks of HL relapse and long-term toxicity
Synthesis of highly 13C enriched carotenoids: access to carotenoids enriched with 13C at any position and combination of positions
Carotenoids and their metabolites are essential factors for the maintenance of important life processes such as photosynthesis. Animals cannot synthesize carotenoids de novo, they must obtain them via their food. In order to make intensive animal husbandry possible and maintain human and animal health synthetic nature identical carotenoids are presently commercially available at the multi-tonnes scale per year. Synthetically accessible 13C enriched carotenoids are essential to apply isotope sensitive techniques to obtain information at the atomic level without perturbation about the role of carotenoids in photosynthesis, nutrition, vision, animal development, etc. Simple highly 13C enriched C1, C2 and C3 building blocks are commercially available via 99% 13CO. The synthetic routes for the preparation of the 13C enriched building blocks starting from the commercially available systems are discussed first. Then, how these building blocks are used for the synthesis of the various 13C enriched carotenoids and apocarotenoids are reviewed next. The synthetic Schemes that resulted in 13C enriched β-carotene, spheroidene, β-cryptoxanthin, canthaxanthin, astaxanthin, (3R,3'R)-zeaxanthin and (3R,3'R,6'R)-lutein are described. The Schemes that are reviewed can also be used to synthetically access any carotenoid and apocarotenoid in any 13C isotopically enriched form up to the unitarily enriched form
Access to Any Site Directed Stable Isotope (2H, 13C, 15N, 17O and 18O) in Genetically Encoded Amino Acids
Proteins and peptides play a preeminent role in the processes of living cells. The only way to study structure-function relationships of a protein at the atomic level without any perturbation is by using non-invasive isotope sensitive techniques with site-directed stable isotope incorporation at a predetermined amino acid residue in the protein chain. The method can be extended to study the protein chain tagged with stable isotope enriched amino acid residues at any position or combinations of positions in the system. In order to access these studies synthetic methods to prepare any possible isotopologue and isotopomer of the 22 genetically encoded amino acids have to be available. In this paper the synthetic schemes and the stable isotope enriched building blocks that are available via commercially available stable isotope enriched starting materials are described
Preparation of 2\u27-13C-L-Histidine Starting from 13C-Thiocyanate: Synthetic Access to Any Site-Directed Stable Isotope Enriched L-Histidine
1-Benzyl-2-(methylthio)-imidazole-5-ketone is obtained in a few simple steps starting from thiocyanate and glycine amide (glycin). Subsequent treatment with diethyl phosphorocyanidate and functional group manipulations gives 1-benzyl-5-chloromethyl-imidazolium chloride. This compound is converted under mild O’Donnell conditions into the corresponding L-histidine derivative. After deprotection L-histidine is obtained in good yield and 99% enantiomeric excess. 2\u27-13C-L-Histidine has been obtained via this new scheme with high (99%) 13C incorporation starting with commercially available 13C- thiocyanate. This synthetic scheme allows access to any isotopomer of L-histidine and many other biologically important imidazole derivatives
- …